
262

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

DOI: 10.4018/978-1-4666-8510-9.ch012

ABSTRACT

Evolution and maintainability of legacy systems is all time attention drawing subject for researchers and
especially practitioners. Discovering the crosscutting concerns and separating it from core functionalities
of a software system may help in evolution of the legacy systems. Aspect-oriented software development
(AOSD) tries to achieve the goal. AOSD is new programming paradigm which helps to bring in modu-
larity in the program by writing the crosscutting concerns in the form of ‘aspects’. Modularity brings
comprehensibility and hence maintainability of the software system. Tools and techniques, which aid in
identifying the crosscutting concerns in such systems and refactoring them into aspects, are needed to
apply aspect-oriented techniques to legacy systems at use in industry. This chapter aims to identify issues,
problems and approaches used in the migration from legacy systems to aspect-oriented software system.

INTRODUCTION

Legacy systems in business industry are very large and complex systems. Evolution of the software systems
is inherent due to many causes. A system decomposed into a well modularized system i.e. functions and
classes may have some functionality that cut across that modularity. This is often referred to as tyranny
of the dominant decomposition (Tarr, Ossher, Harrison, & Sutton Jr, 1999) and such functionalities
are called crosscutting concerns because they are spread over many decomposition units. Examples of
crosscutting concerns are logging, synchronization, exception handling, persistence, exception handling,
and error management. Many crosscutting concerns are spread, either scattered or tangled, all over the
code. This leads to the problem of maintenance and understandability of software systems. Identifica-
tion and modularization of these crosscutting concerns are very difficult. Aspects-oriented techniques
can be applied to the legacy systems in the business industry, i.e. there is a need to migrate the legacy
codes into the aspect-oriented systems. Aspects represent the non-functional requirements or behaviors
of the system. They are the non-functional requirements or –ilities of the system. In order to transform

Legacy Systems towards
Aspect-Oriented Systems

Noopur Goel
VBS Purvanchal University, India

263

Legacy Systems towards Aspect-Oriented Systems

the legacy systems to aspect-oriented systems, there is a need of tools and techniques that can help in
identifying the crosscutting concerns in the systems and refactoring them into aspects. Migration of
the legacy codes into the aspect-oriented systems is composed of aspect mining and aspect refactoring.

Aspect Mining is a reverse engineering process of identifying the crosscutting concerns in the given
source code of the legacy system that can be potentially converted into aspects. Such concerns are re-
ferred to as ‘aspects candidates’.

Aspect Refactoring is the process of converting the identified aspect candidates into real aspects in
the source code.

Due to the large size of the legacy systems, complexity of the code, lack of documentation, and
knowledge about the system, need for tools and techniques that can aid software engineers in locating
and documenting, discovering and refactoring concerns is realized. Code duplicity in the legacy sys-
tems due to the presence of crosscutting concerns scattered and tangled throughout the system can be
separated from the base code using the aspect-oriented technology, thus making the system easier to
understand, maintain, and evolve.

This chapter focuses mainly on issues, drawback, approaches, tools and techniques of aspect mining
and does not deal with aspect refactoring part. For over more than a decade, researchers have tried to
develop tools and techniques to identify crosscutting concerns in previously developed software system,
without using Aspect Oriented Programming (AOP).

In AOP, special classes called “aspects” capture crosscutting concerns. Aspects are defined by aspect
declarations, which may include pointcut declarations, advice declarations, as well as declaration of
those methods, which are permitted in the class declarations. The aspect is woven to produce the final
system, using a special tool called weaver.

The techniques which discover crosscutting concerns, scans for either the symptoms of code duplica-
tion, code scattering, or code tangling. Code scattering means the code which implements a crosscutting
concern is spread across the system. Code tangling means the code which implements some concern is
mixed with code from other crosscutting concerns. The main contribution of this chapter is the presenta-
tion of state-of art of the aspect mining techniques.

The chapter is organized as follows: Section 2 presents the background of legacy systems (including
concepts, issues, challenges in modernization, and various modernization techniques) and concepts of
Aspect-Oriented Software Engineering paradigm. Section 3 discusses various issues involved in the evo-
lution of legacy systems to aspect-oriented systems. In section 4, various problems and causes in aspect
mining techniques are identified. Section 5 identifies and discusses various aspect mining approaches
and techniques proposed by the researchers.

Figure 1. Migrating a legacy system to an aspect-oriented system

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/legacy-systems-towards-aspect-oriented-

systems/135231

Related Content

Secure by Design: Developing Secure Software Systems from the Ground Up
Haralambos Mouratidisand Miao Kang (2011). International Journal of Secure Software Engineering (pp.

23-41).

www.irma-international.org/article/secure-design-developing-secure-software/58506

Network QoS in CPS
 (2015). Challenges, Opportunities, and Dimensions of Cyber-Physical Systems (pp. 98-118).

www.irma-international.org/chapter/network-qos-in-cps/121252

QoS-Aware Web Services Recommendations Using Dynamic Clustering Algorithms
Priya Bhaskar Pandharbale, Sachi Nandan Mohantyand Alok Kumar Jagadev (2022). International Journal

of Information System Modeling and Design (pp. 1-16).

www.irma-international.org/article/qos-aware-web-services-recommendations-using-dynamic-clustering-

algorithms/301274

Identifying Biased Reviews: An Analysis on Amazon Electronic Products
Md. Niaz Imtiaz, Md. Toukir Ahmedand Md. Rakib Hasan (2022). International Journal of Software

Innovation (pp. 1-10).

www.irma-international.org/article/identifying-biased-reviews/297991

Measuring Local Economy Efficiency With Two-Stage Bootstrap DEA: Evidence From Municipal

Currency in South Korea
Hee Jay Kang, Changhee Kimand Jiyoon Son (2022). International Journal of Software Innovation (pp. 1-

14).

www.irma-international.org/article/measuring-local-economy-efficiency-with-two-stage-bootstrap-dea/309964

http://www.igi-global.com/chapter/legacy-systems-towards-aspect-oriented-systems/135231
http://www.igi-global.com/chapter/legacy-systems-towards-aspect-oriented-systems/135231
http://www.irma-international.org/article/secure-design-developing-secure-software/58506
http://www.irma-international.org/chapter/network-qos-in-cps/121252
http://www.irma-international.org/article/qos-aware-web-services-recommendations-using-dynamic-clustering-algorithms/301274
http://www.irma-international.org/article/qos-aware-web-services-recommendations-using-dynamic-clustering-algorithms/301274
http://www.irma-international.org/article/identifying-biased-reviews/297991
http://www.irma-international.org/article/measuring-local-economy-efficiency-with-two-stage-bootstrap-dea/309964

