
141

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-4666-8510-9.ch007

ABSTRACT

Out of the many revolutions in software development methodologies over the past years, no new method-
ology withstands completely in one way or the other. The failure rate of projects is still very high in spite
of so much of revolutionary methodologies come in existence. Unsuccessful projects not only mean the
incomplete projects even after deadline or outdated projects but there may be several other scenarios like
project did not meet up the real requirements or lack of ability to deal with the changing requirements
etc. In this kind of circumstances, projects were never successfully utilized, and another high percentage
of projects again required massive rework to be utilizable. Factors like changing requirements and late
testing and integration are few of the main causes of this high percentage of failure.This paper reveals
how agile development is a way out to the issues linked with traditional software development. Agile
development primarily focuses on the rapid delivery of enterprise worth in the form of working software.

INTRODUCTION

Over the years, traditional software development proved to result in huge failure percentage in one or
the other way. Most of the projects entirely fail, or may be of no use due to several reasons. Generally
software are developed in waterfall-style methodology and this methodology is proved to be one of the
prime contributing factor for almost all types of failures. Failures may be total failures or mostly software
does not meet the actual needs in spite of the fact that they met on-paper specifications. So they are never
successfully utilized. Even if one wants to re-tailor them, it requires extensive amount of rework to make
them usable. Most of the time, re-tailoring decision goes wrong as compare to making a fresh start.

In contrast to traditional software development, agile development has shown promising results in the
past few years. The Manifesto for Agile Software Development was agreed and signed by experienced

Motivation behind Agile
Software Development over

Traditional Development
Karun Madan

SD College, India

142

Motivation behind Agile Software Development over Traditional Development
﻿

and recognized software development “gurus”, inventors and practitioners (Cusumano et. al., 2003). This
manifesto declares the main values of agile software development (Murauskaite et. al., 2008).

Agile software development is based on the methodology in which at first attempt, working software
is given to the client. Client takes it as complete software and gives feedback to the team. This feedback
may be some shortcomings or some new features or some change requirements. The new features were
those which were put into notice at the time of requirements specifications or some change requirements.
In Agile software development, development team takes these change requirements in a positive way
even at late stages of development. In contrast to this, in traditional software development, team can
only present documents at this stage as first attempt to test or run software would be at last stage. Actual
working software is far more useful than just offering documents to product owners in the meetings.

Agile software development is termed as lightweight development methods as an answer to heavy-
weight waterfall-based methodology. In Agile software development requirements need not be fully
gathered at the beginning stages of the software development, rather continuous customer involvement
is vital. Customer should be called in each and every meeting along with development team. As a result,
customer satisfaction increases a lot by rapid delivery of useful working software. This rapid delivery
increases customer’s interest in development process. This results in daily cooperation between business
clients and developer team.

AGILE PRINCIPLES

The Agile Manifesto is based on 12 principles (Beck et. al., 2001):

1. 	 Customer satisfaction is the prime priority by means of rapid and continuous delivery of useful
workable software.

2. 	 Welcome changing requirements throughout the development process, even late in development
to oblige customer’s competitive arena

3. 	 Working software is delivered frequently not only at the end, so weekly releases are preferred over
releases after months of wait

4. 	 Close collaboration among the business people and developers on the daily basis
5. 	 Projects must be built around motivated individuals, Provide them the environment and support,

more importantly show trust in them.
6. 	 Face-to-face discussion is the excellent form of conveying information among the teammates, so

try to assemble them together under one roof frequently
7. 	 Working deployable software is the key measure of progress as compare to less effective documentation
8. 	 Sustainable development must be supported, all the team members of agile software development

ought to maintain a constant pace
9. 	 Continuous attention to the technical brilliance and good design boosts the effect of agile software

development.
10. 	 Simplicity- the art of make the most of the quantity of work not done is necessary.
11. 	 Self-organizing teams results in best architectures, requirements, and designs for the project.
12. 	 Regular adaptation to ever changing situations, then modify its behavior accordingly at regular

intervals.

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/motivation-behind-agile-software-development-

over-traditional-development/135226

Related Content

Prediction of Customer Review's Helpfulness Based on Feature Engineering Driven Deep

Learning Model
Surya Prakash Sharma, Laxman Singhand Rajdev Tiwari (2023). International Journal of Software

Innovation (pp. 1-16).

www.irma-international.org/article/prediction-of-customer-reviews-helpfulness-based-on-feature-engineering-driven-

deep-learning-model/315734

Enforcing ASTD Access-Control Policies with WS-BPEL Processes in SOA Environments
Michel Embe Jiague, Marc Frappier, Frédéric Gervais, Régine Laleauand Richard St-Denis (2011).

International Journal of Systems and Service-Oriented Engineering (pp. 37-59).

www.irma-international.org/article/enforcing-astd-access-control-policies/55122

Software Engineering, Process Improvement, and Experience Management: Is the Nexus

Productive? Clues from the Indian Giants
Neeraj Sharma, Kawaljeet Singhand D.P. Goyal (2014). Software Design and Development: Concepts,

Methodologies, Tools, and Applications (pp. 1401-1414).

www.irma-international.org/chapter/software-engineering-process-improvement-experience/77763

A Proactive Approach to Intrusion Detection in Cloud Software as a Service
Baldev Singhand Surya Narayan Panda (2015). Achieving Enterprise Agility through Innovative Software

Development (pp. 287-305).

www.irma-international.org/chapter/a-proactive-approach-to-intrusion-detection-in-cloud-software-as-a-service/135232

Representation of Situational Methods: Incorporating ISO/IEC 24744 into a Domain-Based

Framework
Iris Reinhartz-Berger (2013). International Journal of Information System Modeling and Design (pp. 32-49).

www.irma-international.org/article/representation-of-situational-methods/80195

http://www.igi-global.com/chapter/motivation-behind-agile-software-development-over-traditional-development/135226
http://www.igi-global.com/chapter/motivation-behind-agile-software-development-over-traditional-development/135226
http://www.irma-international.org/article/prediction-of-customer-reviews-helpfulness-based-on-feature-engineering-driven-deep-learning-model/315734
http://www.irma-international.org/article/prediction-of-customer-reviews-helpfulness-based-on-feature-engineering-driven-deep-learning-model/315734
http://www.irma-international.org/article/enforcing-astd-access-control-policies/55122
http://www.irma-international.org/chapter/software-engineering-process-improvement-experience/77763
http://www.irma-international.org/chapter/a-proactive-approach-to-intrusion-detection-in-cloud-software-as-a-service/135232
http://www.irma-international.org/article/representation-of-situational-methods/80195

