
548

� (���	�����������	���	���

Shawren Singh
University of South Africa, South Africa

Alan Dix
Lancaster University, UK

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Technology Affecting CBISs

As computer technology continues to leapfrog for-
ward, CBISs are changing rapidly. These changes
are having an enormous impact on the capabilities of
organizational systems (Turban, Rainer, & Potter,
2001). The major ICT developments affecting CBISs
can be categorized in three groupings: hardware-
related, software-related, and hybrid cooperative
environments.

Hardware-Related

Hardware consists of everything in the “physical
layer” of the CBISs. For example, hardware can
include servers, workstations, networks, telecom-
munication equipment, fiber-optic cables, handheld
computers, scanners, digital capture devices, and
other technology-based infrastructure (Shelly,
Cashman, & Rosenblatt, 2003). Hardware-related
developments relate to the ongoing advances in the
hardware aspects of CBISs.

Software-Related

Software refers to the programs that control the
hardware and produce the desired information or
results (Shelly et al., 2003). Software-related devel-
opments in CBIS are related to the ongoing advances
in the software aspects of computing technology.

Hybrid Cooperative Environments

Hybrid cooperative environments developments are
related to the ongoing advance in the hardware and
software aspects of computing technology. These

technologies create new opportunities on the Web
(e.g., multimedia and virtual reality) while others
fulfill specific needs on the Web (e.g., electronic
commerce (EC) and integrated home computing).

These ICT developments are important compo-
nents to be considered in the development of CBIS’s.
As new types of technology are developed, new
standards are set for future development. The ad-
vent of hand-held computer devices is one such
example.

BACKGROUND

A Software Engineering View

In an effort to increase the success rate of informa-
tion systems implementation, the field of software
engineering (SE) has developed many techniques.
Despite many software success stories, a consider-
able amount of software is still being delivered late,
over budget, and with residual faults (Schach, 2002).

The field of SE is concerned with the develop-
ment of software systems using sound engineering
principles for both technical and non-technical as-
pects. Over and above the use of specification, and
design and implementation techniques, human fac-
tors and software management should also be ad-
dressed. Well-engineered software provides the
service required by its users. Such software should
be produced in a cost-effective way and should be
appropriately functional, maintainable, reliable, effi-
cient, and provide a relevant user interface (Press-
man, 2000a; Shneiderman, 1992; Whitten, Bentley,
& Dittman, 2001).

There are two major development methodologies
that are used to develop IS applications: the tradi-
tional systems development methodology and the
object-oriented (OO) development approach.

 549

Software Engineering and HCI

�
The traditional systems approaches have the

following phases:

• Planning: this involves identifying business
value, analysing feasibility, developing a work
plan, staffing the project, and controlling and
directing the project.

• Analysis: this involves information gathering
(requirements gathering), process modeling
and data modeling.

• Design: this step is comprised of physical
design, architecture design, interface design,
database and file design, and program design.

• Implementation: this step requires both con-
struction and installation.

There are various OO methodologies. Although
diverse in approach, most OO development method-
ologies follow a defined system development life
cycle. The various phases are intrinsically equiva-
lent for all of the approaches, typically proceeding as
follows:

• OO Analysis Phase (determining what the
product is going to do) and extracting the
objects (requirements gathering), OO de-
sign phase, OO programming phase (imple-
mented in appropriate OO programming lan-
guage), integration phase, maintenance
phase and retirement (Schach, 2002).

One phase of the SE life cycle that is common to
both the traditional development approach and the
OO approach is requirements gathering. Require-
ments’ gathering is the process of eliciting the
overall requirements of the product from the cus-
tomer (user). These requirements encompass infor-
mation and control need, product function and be-
havior, overall product performance, design and
interface constraints, and other special needs. The
requirements-gathering phase has the following pro-
cess: requirements elicitation; requirements analysis
and negotiation; requirements specification; system
modeling; requirements validation; and requirements
management (Pressman, 2000a).

Despite the concerted efforts to develop a suc-
cessful process for developing software, Schach
(2002) identifies the following pitfalls:

• Traditional engineering techniques cannot be
successfully applied to software development,
causing the software depression (software cri-
sis). Mullet (1999) summarizes the software
crisis by noting that software development is
seen as a craft rather than an engineering
discipline. The approach to education taken by
most higher education institutions encourages
that “craft” mentality; lack of professionalism
within the SE world (e.g., the failure of treating
an operating system’s crash as seriously as a
civil engineer would treat the collapse of a
bridge); the high acceptance of fault tolerance
by software engineers (e.g., if the operating
system crashes; reboot hopefully with minimal
damage); the mismatch between hardware and
software developments. Hardware and soft-
ware developments are both taking place at a
rapid pace but independently of each other.
Both hardware and software developments
have a maturation time to be compatible with
each other, but by that time everything has
changed. The final problem for software engi-
neers is the constant shifting of the goalposts.
Customers initially think they want one thing
but frequently change their requirements.

Notwithstanding these pitfalls, Pressman (2000b)
argues that SE principles always work. It is never
inappropriate to stress the principles of solid problem
solving, good design, thorough testing, control of
change, and emphasis on quality.

The Web is an intricate and complex combination
of technologies (both hardware and software) that
are at different levels of maturity. Engineering Web-
based EC software, therefore, has its own unique
challenges. In essence, the network becomes a
massive computer that provides an almost unlimited
software resource that can be accessed by anyone
with a modem (Pressman, 2000a). We illustrate
these intricacies in Figure 1, which is a representa-
tion of a home computer that is attached to the
Internet. It depicts the underlying operating system
(the base platform), the method of connection to the
Internet (dial up, the technology that supports Web
activities), browser, an example of a Web communi-
cation language (HTML), and additional technology
that may be required to be Web active.

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/software-engineering-hci/13172

Related Content

The Theory of Planned Behaviour and its Relation to ICT Adoption
 (2015). ICT Adoption and Application in the Malaysian Public Sector (pp. 96-110).

www.irma-international.org/chapter/the-theory-of-planned-behaviour-and-its-relation-to-ict-adoption/120883

Investigating Smartphone Brand Loyalty for Millennials and Gen Z: A Customer Value Perspective
Masood H. Siddiquiand Tripti Ghosh Sharma (2022). International Journal of Technology and Human Interaction (pp.

1-19).

www.irma-international.org/article/investigating-smartphone-brand-loyalty-for-millennials-and-gen-z/302664

Supporting Implementation of Condition Based Maintenance: Highlighting the Interplay between Technical

Constituents and Human and Organizational Factors
Marcus Bengtsson (2008). International Journal of Technology and Human Interaction (pp. 48-74).

www.irma-international.org/article/supporting-implementation-condition-based-maintenance/2917

The Call to Teach Human Capital Analytics
Clive Trusson (2019). Human Performance Technology: Concepts, Methodologies, Tools, and Applications (pp. 33-

50).

www.irma-international.org/chapter/the-call-to-teach-human-capital-analytics/226554

Measuring the Human Element in Complex Technologies
Niamh McNamaraand Jurek Kirakowski (2008). International Journal of Technology and Human Interaction (pp. 1-14).

www.irma-international.org/article/measuring-human-element-complex-technologies/2914

http://www.igi-global.com/chapter/software-engineering-hci/13172
http://www.igi-global.com/chapter/software-engineering-hci/13172
http://www.irma-international.org/chapter/the-theory-of-planned-behaviour-and-its-relation-to-ict-adoption/120883
http://www.irma-international.org/article/investigating-smartphone-brand-loyalty-for-millennials-and-gen-z/302664
http://www.irma-international.org/article/supporting-implementation-condition-based-maintenance/2917
http://www.irma-international.org/chapter/the-call-to-teach-human-capital-analytics/226554
http://www.irma-international.org/article/measuring-human-element-complex-technologies/2914

