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Introduction

Before 1980, the majority of patients with urolithiasis 
and nephrolithiasis needed surgery (Kerbl, Rehman, 
Landman, Lee, Sundaram, & Clayman, 2002; Soucie et 
al., 1994). Fortunately, percutaneous nephrolithotomy, 
ureteroscopic intrarenal surgery, laparoscopic surgery, 
and extracorporeal shock wave lithotripsy (SWL) now 
allow almost any calculus to be removed without open 
surgery. SWL refers to the use of high intensity pressure 
pulses, generated outside the body, to break up kidney 
stones (Chaussy, Brendel, & Schmiedt, 1980; Loske, 
2007). It has become the standard treatment for the 
majority of patients and an alternative in the manage-
ment of gallbladder stones, pancreatic concrements, 
and salivary gland stones. Even though initial studies 
concluded that shock waves had no damaging effect on 
renal tissue, later several authors reported that shock 
waves may cause tissue trauma (Evan, Willis, Connors, 
McAteer, & Lingeman, 1991; Evan, Willis, & Linge-
man, 2003 Willis et al., 1999). Fortunately, techniques 
and devices are still evolving and improvements to 
increase stone fragmentation efficiency and reduce 
tissue trauma are being constantly sought.

Background

The apparatus to perform SWL, called lithotripters, 
are composed of a shock wave generator, a focusing 
unit, an imaging system, a coupling device, and a 
treatment table (Lingeman, 2007; Loske, 2007). If the 
patient is properly positioned, shock waves enter the 
body, become focused on the calculus, and fracture it. 
Shock wave targeting is performed by fluoroscopy or 
ultrasound imaging systems. Several hundred shock 

waves may be needed to comminute a kidney stone. 
Fragments pass spontaneously through the urinary tract, 
and most patients are free of stones a few days after 
treatment. Three shock wave generation techniques are 
in use: piezoelectric, electrohydraulic, and electromag-
netic (Loske, 2007). Many lithotripters use a focusing 
system to concentrate the shock wave energy onto the 
stone; others are self-focusing. Only piezoelectric shock 
wave generation will be discussed here.

Piezoelectric lithotripters generate shock waves by a 
high voltage discharge applied across an array of up to 
3000 piezoelectric crystals mounted on a hemispheri-
cal bowl-shaped aluminum backing (Figure 1). Other 
systems only use a few crystals or one large spherically 
shaped ceramic plate. Each high voltage discharge 
causes rapid expansion of each crystal, producing 
a pressure wave. The pressure pulse arriving at the 
center (F) is generated by superposition of the pulse 
produced by each crystal (Loske, 2007). The shock 
wave generator is contained inside a cavity filled with 
water and closed with a rubber membrane placed in 
contact with the skin of the patient. Piezoelectric crys-
tals are insulated from water with a flexible polymer. 
These lithotripters produce a focal zone in the shape of 
a cigar measuring about 17 × 3 mm. The shock wave 
pulse rate and the discharge voltage can be varied. 
The pressure in the focal region (Figure 2) consists of 
a compression pulse with a peak between 30 and 150 
MPa and a phase duration of 0.5 to 3 µs, followed by 
a decompression pulse, sometimes referred to as the 
“negative” pressure pulse, with a tensile peak of up to 
- 20 MPa, and a phase duration between 2 and 20 µs. 
Pressure rise time is about 300 ns.

Cavitation is one of the main stone comminution 
mechanisms. Calculi also fracture due to spalling, 
squeezing, superfocusing, and fatigue (Eisenmenger, 
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Figure 1. Schematic of a standard piezoelectric shock wave generator. The power supply P charges a capacitor 
C, which remains charged until the switch S is fired by the trigger T. Shock wave rate can be adjusted with the 
pulse generator G.
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Figure 2. Pressure record obtained with a fiber optic hydrophone (FOPH 2000, RP Acoustics, Leutenbach, 
Germany), positioned at the focus of a standard piezoelectric lithotripter.

2001; Lokhandwalla, & Sturtevant, 2000; Loske, 2007). 
During SWL, all microbubbles contained in the fluid 
near the calculus are compressed by the positive peak 
(Figure 3). Their volume increases about 50 to 100 
µs after shock wave passage. This occurs due to the 
action of the tensile part of the shock wave (Bailey 
et al., 2005). Lithotripter generated bubbles expand, 

stabilize, and collapse violently after approximately 
250 to 500 µs, producing high-speed microjets (Crum, 
1988), capable of damaging the calculus. 

Enhanced fragmentation can be obtained if a sec-
ond shock wave arrives during or shortly after their 
stable phase (Figure 4). This has been demonstrated 
with twin pulses generated from two identical shock 
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