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IntroductIon

The ability to visualise hidden structures in detail us-
ing 3-D volume data has become a valuable resource 
in medical imaging applications (Maintz & Viergever, 
1998). Importantly, the alignment of volumes enables 
the combination of different structural and functional 
information for diagnosis and planning purposes (Pluim, 
Maintz, & Viergever, 2003). Transform optimisation, 
resampling, and similarity calculation form the basic 
stages of a registration process (Zitova & Flusser, 
2003): During transform optimisation, translation and 
rotation parameters which geometrically map points 
in the reference (fixed) image/volume to points in the 
sensed (moving) image/volume are estimated. Once 
estimated, pixel/voxel intensities which are mapped 
into nondiscrete coordinates are interpolated during 
the resampling stage. After resampling, a metric is 
used for similarity calculation in which the degree of 
likeness between corresponding volumes is evaluated 
(Tait & Schaefer, 2008). Optimisation of the similarity 
measure is the goal of the registration process and is 
achieved by seeking the best transform. All possible 
transform parameters therefore define the search space. 
Due to the iterative nature of registration algorithms, 
similarity calculation represents a considerable per-
formance bottleneck which limits the speed of time 
critical clinical applications.

The use of parallel computing to overcome these 
time constraints has become an important research area 
(Nicolescu & Jonker, 2000). Conveniently, many of the 
similarity calculation strategies employed in medical 
registration are inherently parallel and therefore well 
suited to distribution. An important consideration when 
adopting a parallel processing approach is the archi-
tecture of the host system. In a computer constructed 
of multiple processors with shared-memory, data 
distribution is not required. These systems are viewed 

as tightly-coupled architectures. In contrast, a loosely-
coupled architecture consists of multiple computers 
in different locations. Loosely-coupled architectures 
therefore require data distribution, communication, 
and accumulation mechanisms. Importantly, the most 
effective distribution scheme will depend on the ar-
chitecture of the host system (Seinstra, Koelma, & 
Geusebroek, 2002). The two contrasting architectures 
of host systems are illustrated in Figure 1.

Background

In the context of parallel processing, registration of 
medical data has been achieved by Warfield, Jolesz, and 
Kikinis (1998) who introduced a nonrigid algorithm 
based on the work-pile paradigm. Their goal was to 
develop an interpatient registration algorithm which can 
be applied without operator intervention to a database 
of several hundred scans. In an initial step, each scan 
is segmented using a statistical classification method. 
This preprocessing stage is used to identify different 
tissue types including skin, white matter, grey mat-
ter, and bone structure. Once segmented, a transform 
which brings these features into alignment is estimated. 
The system employs a message passing interface and 
cluster of symmetric multiprocessors to execute par-
allel similarity calculation operations using multiple 
threads. Crucially, work is dynamically load balanced. 
Results published by the group show that successful 
registration of 256 × 256 × 52 volume brain scans can 
been achieved in minutes rather than hours.

Christensen (1998) compares two nonthreaded ar-
chitectures, Multiple Instruction Multiple Data (MIMD) 
and Single Instruction Multiple Data (SIMD). The 
work presented raises implementation issues and tim-
ing analysis for the registration of 32 × 32 × 25, 64 × 
64 × 50 and 128 × 128 × 100 volume datasets. During 
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each clock cycle, the SIMD implementation performs 
calculations in which all processors are performing 
the same operation. The MIMD implementation, in 
contrast, breaks an algorithm into independent parts 
which are solved simultaneously by separate proces-
sors. The movement of data in both shared-memory 
systems is unrestricted and during execution each 
processor has access to the whole memory. The main 
performance bottleneck associated with both ap-
proaches was reported as scalability of hardware with 
increasing numbers of processors. Crucially, the MIMD 
implementation is recorded as being approximately 
four times faster than its SIMD counterpart. Reduced 
performance of the SIMD implementation is report-
edly caused by overheads during serial portions of the 
registration algorithm.

More recently, the demands placed on registration 
algorithms when aligning deformable structures in 3-D 
space have been discussed. Salomon, Heitz, Perrin, and 
Armspach (2005) introduce deformable registration 
of volumes which involves optimisation of several 
thousand parameters and typically requires several 
hours processing on a standard workstation. Based on 
simulation of stochastic differential equations and us-
ing simulated annealing, a parallel approach that yields 
processing times compatible with clinical routines 
is presented. The approach represents a hierarchical 
displacement vector field which is estimated by means 
of an energy function. The energy function is scaled in 

relation to the similarly measure and is re-evaluated at 
the end of each transform parameter optimisation cycle. 
The algorithm is reportedly suited to massively parallel 
implementation and has been successfully applied to 
the registration of 256 × 256 × 256 volumes. Again, 
the results published demonstrate how alignment can 
be achieved in minutes rather than hours.

In the next section, a coarse-grained approach to 
parallelism is described which increases flexibility 
and allows the issues of fine-grained parallelism to be 
ignored. Building on a distributed blackboard architec-
ture, the approach adopted supports multiple distributed 
agents organised in a worker/manager model. Crucially, 
the basic alignment steps are allocated to individual 
processors, the most computationally intensive of which 
are performed concurrently.

SIMIlarIty calculatIon uSIng 
a dIStrIButed BlackBoard 
archItecture

Formally the inputs to a volume-based registration 
process can be defined as the fixed volume, the moving 
volume, and the transform used to map voxel coordi-
nates. The goal of the registration process is recovery 
of a spatial mapping that brings the two volumes into 
alignment (Yoo, 2004). To achieve this, a metric is 
employed to generate a measure of similarity based 
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Figure 1. Tightly vs. loosely-coupled architectures. Data is either fetched from main memory via a memory bus, 
or is transferred over a communications network.
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