
1091

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 53

DOI: 10.4018/978-1-4666-7230-7.ch053

A Systematic Approach
to Evaluating Open

Source Software

ABSTRACT

Selecting appropriate Open Source Software (OSS) for a given problem or a set of requirements can be
very challenging. Some of the difficulties are due to the fact that there is not a generally accepted set of
criteria to use in evaluation and that there are usually many OSS projects available to solve a particular
problem. In this study, the authors propose a set of criteria and a methodology for assessing candidate
OSS for fitness of purpose using both functional and non-functional factors. The authors then use these
criteria in an improved solution to the decision problem using the well-developed Analytical Hierarchy
Process. In order to validate the proposed model, it is applied at a technology management company in
the United Arab Emirates, which integrates many OSS solutions into its Information Technology infra-
structure. The contribution of this work is to help decision makers to better identify an appropriate OSS
solution using a systematic approach without the need for intensive performance testing.

INTRODUCTION

The terms “Open Source Software” (OSS), “Free
Software,” “Free Open Source Software” (FOSS),
and “Free/Libre Open Source Software” (FLOSS)
are often treated synonymously (Feller & Fitzger-
ald, 2002; Feller et al., 2005; Koch, 2005). When
we look at their respective license agreements,
however, we can easily see that they are quite

different. Free software is generally licensed with
the GNU General Public License (GPL), while
OSS may use either the GPL or some other license
that allows for the integration of software that
may not be free (Elliott & Scacchi, 2008; Gay,
2002). Free software is always available as OSS,
but OSS is not always free software. Therefore it
is more appropriate to refer to FOSS or FLOSS
instead of the more general term “open source”

Norita Ahmad
American University of Sharjah, UAE

Phillip A. Laplante
The Pennsylvania State University, Great Valley, USA

1092

A Systematic Approach to Evaluating Open Source Software

in order to differentiate between the two differ-
ent models and preserve the original meaning of
the free software/FOSS/FLOSS. We would like
to note that in this paper, when appropriate, we
used terms specific to either free software or OSS
when such differentiation is necessary.

Since most OSS is free to use and modify with
no licensing fees, it is attractive for use by many
including government, businesses, and non-profits
(Feller, Fitzgerald, Hissam, & Lakhani, 2005).
However, it can be difficult to evaluate or choose
the right OSS. One of the unique challenges of
evaluating OSS is the sheer number of OSS proj-
ects available (Feller & Fitzgerald, 2002). Anyone
can create an OSS project on a free hosting site
such as SourceForge.net. This low barrier to entry
means that many OSS software projects are very
immature (Deprez & Alexandre, 2008; Gacek
& Arief, 2004). Another challenge is that OSS
projects often have little documentation (Wheeler,
2005). Without proper documentation and user
manuals that traditionally accompany commercial
software, it can be difficult to confirm an OSS’
feature set.

Balancing the challenges of evaluating OSS
software are the unique advantages provided.
The biggest advantage is that the source code is
available for analysis, which is vital in determin-
ing whether the software is of high quality and
is maintainable. Another advantage is that many
OSS projects provide public read-only access to
their issue tracking system, which can give valu-
able insight into how fast the project is growing,
whether defects are being found and fixed, and the
amount of time it takes to resolve issues.

Selecting appropriate OSS for a given problem
or a set of requirements can be very challenging.
Some of the difficulties are due to the fact that there
is not a generally accepted set of criteria to use in
evaluation, and that there are usually many OSS
projects available to solve a particular problem.
Therefore the evaluation is often done in an ad
hoc manner, using whatever criteria were avail-

able to the evaluators (Conradi, Bunse, Torchiano,
Slyngstad, & Morisio, 2009; Norris, 2004). This
kind of approach leads to evaluations that are not
systematic or standardized within or between or-
ganizations, and are not repeatable, which in turn,
could slow down project development. Another
known problem is that, the evaluation process often
lack operational approach where not everybody
is involved in the evaluation process (Merilinna
& Matinlassi, 2006; Torchiano & Morisio, 2004).

In this study, we propose a rigorous selec-
tion methodology for assessing candidate OSS
using both functional and non-functional factors
based on a set of criteria (Confino & Laplante,
2010) where every stakeholder in an organization
can be involved. In order to test this evaluation
model several important OSS were examined.
We present an improved solution to the problem
using the well-developed Analytical Hierarchy
Process (AHP), which is not traditionally used or
advocated by software developers/engineers. We
also surveyed fifteen experts from a technology
management company in the United Arab Emirates
(UAE) which integrate many OSS solutions into its
infrastructure. The contribution of this work is to
help the decision maker to make a better decision
in identifying an appropriate OSS solution using
a systematic and repeatable approach without the
need for intensive performance testing.

PREVIOUS AND RELATED WORK

An Open Source Software (OSS) program is a
piece of software, with its source code available,
that any person can access, use and copy provided
that the associated license provisions are honored.
A more comprehensive and formal definition of
OSS can be found at the Open Source Initiative
web site (Open Source Initiative, 2010). Many
have argued that the definition provided by the
Open Source Initiative is not sufficient and there-
fore devised a few more explanations (Feller &

17 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-systematic-approach-to-evaluating-open-

source-software/120959

Related Content

Open Source Software Development Process Model: A Grounded Theory Approach
Keng Siauand Yuhong Tian (2015). Open Source Technology: Concepts, Methodologies, Tools, and

Applications (pp. 1052-1068).

www.irma-international.org/chapter/open-source-software-development-process-model/120957

Teaching Software Engineering with Free/Libre Open Source Projects
Ioannis G. Stamelos (2011). Multi-Disciplinary Advancement in Open Source Software and Processes (pp.

67-85).

www.irma-international.org/chapter/teaching-software-engineering-free-libre/52246

A Novel UML Based Approach for Early Detection of Change Prone Classes
Deepa Bura, Amit Choudharyand Rakesh Kumar Singh (2017). International Journal of Open Source

Software and Processes (pp. 1-23).

www.irma-international.org/article/a-novel-uml-based-approach-for-early-detection-of-change-prone-classes/201055

Critical Barriers to Business Intelligence Open Source Software Adoption
Placide Poba-Nzaou, Sylvestre Uwizeyemunguand Mariem Saada (2021). Research Anthology on Usage

and Development of Open Source Software (pp. 480-503).

www.irma-international.org/chapter/critical-barriers-to-business-intelligence-open-source-software-adoption/286590

A Study on Class Imbalancing Feature Selection and Ensembles on Software Reliability

Prediction
Jhansi Lakshmi Potharlanka, Maruthi Padmaja Turumellaand Radha Krishna P. (2019). International

Journal of Open Source Software and Processes (pp. 20-43).

www.irma-international.org/article/a-study-on-class-imbalancing-feature-selection-and-ensembles-on-software-reliability-

prediction/242946

http://www.igi-global.com/chapter/a-systematic-approach-to-evaluating-open-source-software/120959
http://www.igi-global.com/chapter/a-systematic-approach-to-evaluating-open-source-software/120959
http://www.irma-international.org/chapter/open-source-software-development-process-model/120957
http://www.irma-international.org/chapter/teaching-software-engineering-free-libre/52246
http://www.irma-international.org/article/a-novel-uml-based-approach-for-early-detection-of-change-prone-classes/201055
http://www.irma-international.org/chapter/critical-barriers-to-business-intelligence-open-source-software-adoption/286590
http://www.irma-international.org/article/a-study-on-class-imbalancing-feature-selection-and-ensembles-on-software-reliability-prediction/242946
http://www.irma-international.org/article/a-study-on-class-imbalancing-feature-selection-and-ensembles-on-software-reliability-prediction/242946

