Examining the Theoretical Factors that Influence University Students to Adopt Web 2.0 Technologies: The Australian Perspective

Yasser D. Al-Otaibi, Griffith University, Nathan, Australia
Luke Houghton, Griffith University, Nathan, Australia

ABSTRACT
The purpose of this study is (1) to examine Australian university students’ awareness of the benefits of Web 2.0 technologies and (2) to investigate the factors that influence students to adopt Web 2.0 technologies to supplement in-class learning, using the theoretical foundations of both Theory of Planned Behaviour (TPB) and Decomposed Theory of Planned Behaviour (DTPB). Findings indicated that most students in this study’s sample were aware of the benefits of Web 2.0 technologies to supplement in-class instructions. The findings also indicated that students’ attitude, subjective norms, and perceived behavioural control were strong determinants of their intention to use Web 2.0 technologies.

Keywords: Australian Universities, Context Extension, Decomposed Theory of Planned Behaviour, Path Analysis, Replication, Student Adoption, Theory of Planned Behaviour, Web 2.0

INTRODUCTION
In the past decade the Web has shifted from a source of information to a place in which ordinary users can contribute content interactively through blogs, reviews and so on. Web 2.0 has opened a window of opportunity for people to become producers of content rather than merely receiving it (Blank & Reisdorf, 2012). There is an increasing demand in education approaches and pedagogies for innovation (McLoughlin & Lee, 2007). In addition, students of this era

DOI: 10.4018/ijicte.2015010101
are considered digital natives as they are widely exposed to technologies such as computers, cell phones and the Internet (Bennett, Maton, & Kervin, 2008; Prensky, 2001). Currently, there is a growing use of Web 2.0 such as wikis, social networks, social bookmarking and blogs by these digital natives (Jones, Ramanau, Cross, & Healing, 2010), and thus exploring students’ perceptions of the fit of these technologies for educational purposes requires more attention from the research community.

Little research has been conducted to address students’ perceptions of the advantages of incorporating Web 2.0 applications to supplement in-class learning environments. In an attempt to fill this void, Hartshorne and Ajjan (2009) conducted a study that examined university students’ awareness of the pedagogical benefits of Web 2.0 applications to understand the factors that influence students to adopt these tools. This study was done in the U.S. in which the external validity of its findings is regarded as a viable research goal. Indeed, Johns (2006) indicates that context has a powerful effect on the results of a given study. In this regard, the variations of results between studies that investigate the same phenomenon within different contexts are regarded as an indicator of context effect (Johns, 2006). In line with this argument, based on the Theory of Planned Behaviour (TPB) (Ajzen, 1991) and the Decomposed Theory of Planned Behaviour (Taylor & Todd, 1995), this Australian-based research aims to provide a contextual extension for Hartshorne and Ajjan’s (2009) study.

The rationale of this strategy is to add to the literature through learning about specific factors that influence students from Australian universities to adopt Web 2.0 technologies. The purpose of this research is to address the following research questions: (1) Are university students aware of the benefits of using blogs, wikis, social networks and social bookmarking to supplement traditional classroom instruction? and (2) What factors influence student decisions to adopt blogs, wikis, social networks and social bookmarking to supplement classroom instruction?

**Scope of the Study**

This study explores the students’ perception of the suitability of blogs, wikis, social networks and social bookmarking to supplement in-class learning according to six criteria statements. These are: (1) improve students’ learning, (2) increase student-faculty interactions, (3) increase student-student interactions, (4) increase student satisfaction with the course, (5) improve students writing, (6) ease of integration into university courses (Baylor & Ritchie, 2002; Hartshorne & Ajjan, 2009). Thus, the aim is to allow respondents to indicate the fitness of each technology in relation to the above mentioned criteria, in which the categorisation of these technologies can be attained from the students themselves. Moreover, it should be noted that providing an in-depth analysis of the possible types of use and interaction with these technologies by students is beyond the scope of this study.
Related Content

Technology Integration and Urban Schools: Implications for Instructional Practices
[www.irma-international.org/article/technology-integration-urban-schools/45150](http://www.irma-international.org/article/technology-integration-urban-schools/45150)

“E” is for “Ecology”: An Ecosystem Approach to Sustainable E-Learning
M. Banu Gundogan (2014). *Handbook of Research on Emerging Priorities and Trends in Distance Education: Communication, Pedagogy, and Technology* (pp. 103-119).
[www.irma-international.org/chapter/e-is-for-ecology/103595](http://www.irma-international.org/chapter/e-is-for-ecology/103595)

User Interface Design Pedagogy: A Constructionist Approach
[www.irma-international.org/article/user-interface-design-pedagogy/38987](http://www.irma-international.org/article/user-interface-design-pedagogy/38987)

Integrating New Technologies to Promote Distance Learning
[www.irma-international.org/chapter/integrating-new-technologies-promote-distance/11904](http://www.irma-international.org/chapter/integrating-new-technologies-promote-distance/11904)

An E-Learning System Based on the Top-Down Method and the Cellular Models
Norihiro Fujii, Shuichi Yukita, Nobuhiko Koike and Tosiyasu L. Kunii (2004). *International Journal of Distance Education Technologies* (pp. 77-93).
[www.irma-international.org/article/learning-system-based-top-down/1641](http://www.irma-international.org/article/learning-system-based-top-down/1641)