
380

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

Unifying Services
and Resources:

A Unified Architectural
Style for Integrations

ABSTRACT

Current integration solutions are still based on technologies developed for the original Web problem,
which is browsing remote hypermedia documents with text as the main media type. Text-based data de-
scriptions such as XML and JSON and stateless and connectionless protocols such as HTTP are still the
norm to achieve distributed integration. However, the Web today is much more dynamic, in that resources
are no longer passive hypermedia documents but are active and implement services. SOA and REST are
the most used architectural styles to implement distributed integration, and each exhibits advantages
and disadvantages. This chapter illustrates that they are dual architectural styles—one oriented towards
behavior and the other towards state—and contends that it is possible to combine them to maximize
the advantages and to minimize the disadvantages. A new architectural style, designated Structural
Services, is proposed and described. Unlike REST, resources are able to offer a variable set of opera-
tions, and unlike SOA, services are allowed to have structure. To minimize resource coupling, this style
uses structural interoperability based on the concepts of structural compliance and conformance, instead
of schema sharing (as in SOA) or standardized and previously agreed upon media types (as in REST).
To delineate how this style can be implemented, a new distributed programming language is presented.

José C. Delgado
Instituto Superior Técnico, Universidade de Lisboa, Portugal

DOI: 10.4018/978-1-4666-6178-3.ch016

381

Unifying Services and Resources
﻿

INTRODUCTION

The main integration technologies available today
are based on the SOA (Erl, 2005) and REST (Web-
ber, Parastatidis, & Robinson, 2010) architectural
styles, with SOAP Web services (WS) and HTTP
RESTful services as the main workhorses. They
constitute two different approaches to solve the
same problem: application integration. SOA has
the goal of a low semantic gap, since it models
real world entities by resources with services that
express their capabilities. This is good in mod-
eling terms, but entails a coupling between the
provider and the consumer that hampers dynamic
changeability and adaptability. If the provider’s
interface changes, the consumer’s interface also
needs to change in accordance. There is no appar-
ent structure, since service composition is hidden
behind each service interface.

One of the main goals of REST is to reduce the
coupling between provider and consumer, both to
increase scalability and adaptability. Real world
entities are modeled in a data-oriented manner by
resources, all with the same syntactical interface
(same set of operations). Semantics are restricted to
a set of data types (or schemas), either standardized
or previously agreed upon between the interacting
entities. The variability of the characteristics of
entities is modeled by visible structure (resources
composed of other resources) and the semantics
of the agreed data types.

Unfortunately, the decoupling goal of REST is
somewhat elusive. Messages cannot be understood
simply by exploring their data structure, touch-
ing links blindly. Semantics and behavior need
to be considered as well, and this is determined
by the type of resources used. For example, if the
provider decides to change its specifications, the
code at the consumer will most likely be unable
to cope with that.

What happens in practice is that REST on
HTTP is simpler to use than SOA style SOAP

Web services and many applications are simple
enough to adopt a data-oriented interface i.e.,
REST style. This means that, although REST
represents a modeling shift from real world enti-
ties (lowering the modeling level and increasing
the semantic gap), it is still simpler to use than a
full-blown SOA environment. Unless, of course,
the application is sufficiently complex to make
the semantic gap visible and relevant enough.
This is why REST is preferable in simpler appli-
cations and SOA is a better match for complex,
enterprise-level applications.

Nevertheless, REST gets one aspect right: in a
distributed context, interoperability has to be based
on structural composition of previously known
entities. Forcing these to have one single set of
operations, however, does not increase adaptability
in the general sense; it only leads applications to
adopt a data-oriented style, which is not adequate
for all classes of applications.

The following questions then arise:

•	 Why do we have to choose between the
service-oriented (SOA) and data-oriented
(REST) styles, instead of combining both
and using the best approach for each part
of the application?

•	 How can we increase adaptability with-
out enforcing some particular application
style?

This chapter revisits the integration problem
with an open mind, without being restricted a
priori by existing technologies. The only assump-
tion is that there are entities that need to interact,
by using messages. Then, an integration model is
defined and its various characteristics compared
with those of current technologies, showing how
this model can solve some of their limitations.

The main goal of this chapter is to propose
and describe a new architectural style, designated
Structural Services, which combines the best char-

32 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/unifying-services-and-resources/115437

Related Content

Business Process Modeling with Services: Reverse Engineering Databases
Youcef Baghdadiand Naoufel Kraiem (2014). Uncovering Essential Software Artifacts through Business

Process Archeology (pp. 177-200).

www.irma-international.org/chapter/business-process-modeling-with-services/96620

Automated Synthesis and Ranking of Secure BPMN Orchestrators
Vincenzo Ciancia, Jose Martin, Fabio Martinelli, Ilaria Matteucci, Marinella Petrocchiand Ernesto Pimentel

(2014). International Journal of Secure Software Engineering (pp. 44-64).

www.irma-international.org/article/automated-synthesis-and-ranking-of-secure-bpmn-orchestrators/113726

Design Patterns and Design Principles for Internal Domain-Specific Languages
Sebastian Günther (2013). Formal and Practical Aspects of Domain-Specific Languages: Recent

Developments (pp. 156-214).

www.irma-international.org/chapter/design-patterns-design-principles-internal/71820

Finding Optimal Transport Route and Retail Outlet Location Using Mobile Phone Location Data
Giridhar Majiand Soumya Sen (2022). International Journal of Software Innovation (pp. 1-20).

www.irma-international.org/article/finding-optimal-transport-route-and-retail-outlet-location-using-mobile-phone-location-

data/301226

Building a Self-Sustaining World: How AI and Self-Sustaining Systems Converge
Prithi Samuel, Reshmy A. K., Sudha Rajeshand Karthika R. A. (2024). The Convergence of Self-Sustaining

Systems With AI and IoT (pp. 85-103).

www.irma-international.org/chapter/building-a-self-sustaining-world/345507

http://www.igi-global.com/chapter/unifying-services-and-resources/115437
http://www.irma-international.org/chapter/business-process-modeling-with-services/96620
http://www.irma-international.org/article/automated-synthesis-and-ranking-of-secure-bpmn-orchestrators/113726
http://www.irma-international.org/chapter/design-patterns-design-principles-internal/71820
http://www.irma-international.org/article/finding-optimal-transport-route-and-retail-outlet-location-using-mobile-phone-location-data/301226
http://www.irma-international.org/article/finding-optimal-transport-route-and-retail-outlet-location-using-mobile-phone-location-data/301226
http://www.irma-international.org/chapter/building-a-self-sustaining-world/345507

