
220

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

A Service-Oriented
Computing Platform:
An Architecture Case Study

ABSTRACT

In Service-Driven Computing, the client-server architecture describes the relationship of cooperating
programs in a distributed application. The providers of a resource or service execute workloads sub-
mitted by service requestors. Web service, Grid, and Cloud Computing technologies are based on the
client-server architecture. A true service-oriented architecture describes everything, anywhere, anytime
as a service. This chapter presents the SORCER (Service-ORiented Computing EnviRonment) platform,
which provides service-oriented modeling or programming or both (mogramming) environments within
its operating system that runs front-end service-oriented mograms and dynamically manages correspond-
ing federations of local and remote service providers. The architecture of SORCER is described with the
focus on service-oriented mogramming, service context-awareness, and its operating system managing
everything as a service type. A case study report illustrates how SORCER is used for a conceptual design
of the next generation of efficient supersonic air vehicles.

Michael Sobolewski
United States Air Force Research Laboratory, USA & Polish-Japanese Institute of Information

Technology, Poland

DOI: 10.4018/978-1-4666-6178-3.ch010

221

A Service-Oriented Computing Platform
﻿

INTRODUCTION

From the very beginning of networked computing,
the desire has existed to develop protocols and
methods that facilitate the ability of people and
automatic processes across different computers to
share resources and information among computing
nodes in an optimized way. As ARPANET (Postel
et al., 1981) began through the involvement of the
NSF (Lynch et al., 1992; Postel & Reynolds, 1987)
to evolve into the Internet for general use, the steady
stream of ideas became a flood of techniques to
submit, control, and schedule workloads across
distributed systems (Lee, 1992).

The term “metacomputing” (Metacomputing,
n.d.) was coined around 1987 by NCSA Direc-
tor, Larry Smarr. The metacomputer is, simply
put, a collection of computers held together by
state-of-the-art technology and balanced so
that, to the individual user, it looks and acts like
a single computer. The constituent parts of the
resulting metacomputer could be housed locally,
or distributed between buildings, and even conti-
nents. Globally distributed service-oriented (SO)
computing systems are metacomputing systems.

The latest in client-server ideas are the Grid
(Foster et al., 2001) and Cloud (Linthicum, 2009),
intended to be used by a wide variety of different
users in a non-hierarchical manner to provide ac-
cess to powerful aggregates of resources and ser-
vices. Grids and Clouds, in the ideal, are intended
to be accessed for computation, data storage and
distribution, and visualization and display, among
other applications, without undue regard for the
specific nature of the hardware and underlying
operating systems on the resources on which these
jobs (executable codes) are carried out. While a
Grid is focused on computing resource utilization,
Clouds are focused on platform virtualization in
computer networks. In general, Grid and Cloud
Computing is client-server model that abstract the
details of the server away by requesting a service
(resource), and not a specific server (machine).
However, both terms are vague from the point of

view of service-oriented (SO) architectures and
related programming models. In those cases the
architecture refers usually to a form of API-based,
client-server middleware-managing services
and clients written in general-purpose software
languages with no front-end SO layer. It means
that at the back-end, each time a new service
(code) has to be developed; it must be deployed
at the server by software developers and later ac-
cessed by the end users in their applications via
the middleware API. In these systems there is no
front-end option that allows the end user to create
at runtime complex service collaborations directly
from existing services in the network.

As we reach adolescence in the information
era, we are facing the dawn of the service era,
an era that will be marked not by PCs, worksta-
tions, and servers, but by computational capa-
bility that is embedded in all things around us
exposing ubiquitous services. A service is the
work performed in which a service provider (one
that serves) exerts acquired abilities to execute
a computation. Service providers just consume
services and provide services from and to each
other respectively. Applications are increasingly
moving to the network - self aware, autonomic
networks that are always fully functional. The
service providers implement instructions of the
virtual service processor (metaprocessor). In a
true SO system everything anytime anywhere is
a service by the analogy to an object-oriented
system where everything is an object. Therefore
for each service there is a corresponding local or
remote service provider and all service providers
are treated by the SO platform in a uniform way.

As we move from solving problems of the
information era to more complex problems of
the service era, it is becoming evident that new
programming or modeling or both (mogramming)
languages are required. These languages should
reflect the complexity of computing problems
we are already facing in development of complex
adaptive systems by large collaborative teams
that use hundreds of executable codes written in

34 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-service-oriented-computing-platform/115430

Related Content

Experiences With Computer Architecture Remote Laboratories
Pablo Daniel Godoy, Osvaldo Lucio Marianettiand Carlos Gabriel García Garino (2021). Handbook of

Research on Software Quality Innovation in Interactive Systems (pp. 133-153).

www.irma-international.org/chapter/experiences-with-computer-architecture-remote-laboratories/273568

A Framework for Developing Management Intelligent Systems
Zhaohao Sun (2016). International Journal of Systems and Service-Oriented Engineering (pp. 37-53).

www.irma-international.org/article/a-framework-for-developing-management-intelligent-systems/153170

Experiences with Requirements Model Reuse: The NFR Catalogue for Ubiquitous Systems
Milene Serrano, Carlos José Pereira de Lucena, John Mylopoulosand Eric Yu (2012). Handbook of

Research on Mobile Software Engineering: Design, Implementation, and Emergent Applications (pp. 193-

210).

www.irma-international.org/chapter/experiences-requirements-model-reuse/66468

Visitor Design Pattern Using Reflection Mechanism
Bilal Hussein, Aref Mehannaand Yahia Rabih (2020). International Journal of Software Innovation (pp. 92-

107).

www.irma-international.org/article/visitor-design-pattern-using-reflection-mechanism/243382

A Framework for Homogeneous Cross-Project Defect Prediction
Lipika Goel, Mayank Sharma, Sunil Kumar Khatriand D. Damodaran (2021). International Journal of

Software Innovation (pp. 52-68).

www.irma-international.org/article/a-framework-for-homogeneous-cross-project-defect-prediction/266282

http://www.igi-global.com/chapter/a-service-oriented-computing-platform/115430
http://www.irma-international.org/chapter/experiences-with-computer-architecture-remote-laboratories/273568
http://www.irma-international.org/article/a-framework-for-developing-management-intelligent-systems/153170
http://www.irma-international.org/chapter/experiences-requirements-model-reuse/66468
http://www.irma-international.org/article/visitor-design-pattern-using-reflection-mechanism/243382
http://www.irma-international.org/article/a-framework-for-homogeneous-cross-project-defect-prediction/266282

