
76

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

Dynamic Reconfiguration of
Component-Based Systems:

A Feature Reification Approach

ABSTRACT

Component-based approaches generalize basic object-oriented implementations by allowing large collec-
tions of objects to be grouped together and externalized in terms of public interfaces. A typical component-
based system will include a large number of interacting components. Service-Oriented Architecture (SOA)
organizes a system in terms of components that communicate via services. Components publish services
that they implement as business processes. Consequently, a change to a single component can have a
ripple effect on the service-driven system. Component reconfiguration is motivated by the need to evolve
the component architecture and can take a number of forms. The authors define a dynamic architecture
as one that supports changing the behavior and topology of existing components without stopping,
updating, and redeploying the system. This chapter addresses the problem of dynamic reconfiguration
of component-based architectures. It proposes a reification approach that represents key features of a
language in data, so that a system can reason and dynamically modify aspects of it. The approach is
described in terms of a new language called μLEAP and validated by implementing a simple case study.

Tony Clark
Middlesex University, UK

Balbir S. Barn
Middlesex University, UK

Vinay Kulkarni
Tata Research Development and Design Centre, India

DOI: 10.4018/978-1-4666-6178-3.ch004

77

Dynamic Reconfiguration of Component-Based Systems

INTRODUCTION

Modern software systems are often organized
in terms of components. Component-based
approaches generalize basic object-oriented
implementations by allowing large collections of
objects to be grouped together and externalized in
terms of public interfaces. Such systems execute
in terms of messages between components where
the distance between message source and target
is completely arbitrary.

Once defined, components are instantiated and
deployed on platforms that handle the initiation,
scheduling, addressing, and message routing for
component-based execution. The details of com-
ponent communication in terms of messages must
be transparent whether it takes place on the same
platform, on the same network, or over significant
geographic distances. Different styles of message
passing and component organization lead to differ-
ent types of architecture. In addition, components
may be used at all stages in the Enterprise Archi-
tecture (EA) design and development process, from
business models through models of IT infrastruc-
ture to the implementations themselves. The next
section provides an overview of approaches and
uses of component-based architectures.

Given the issues outlined above, definition
and deployment of component-based systems is
more complex than straightforward, single proces-
sor, object-oriented applications. However, the
life-cycles of both types of applications involve
change. A traditional, single point-of-entry Java
program can be stopped, edited, recompiled, and
restarted almost immediately. An update step to a
component-based system is more complex. This is
partly because of the implementation technologies
involved that require more editing and checking.
However, a typical component-based system will
include a large number of interacting components.
Therefore, a change to a single component can
have a ripple effect. If a component were to shut
down, other components may not be able to oper-
ate effectively. It is likely that the owner of the

redeployed component will not have control over
some of the components that are affected. The
issues related to architectural reconfiguration are
described in a later section.

Our approach to solving this problem is to reify
those aspects of component-based computation
that are involved in post-deployment change.
The process of reification involves representing
in data those aspects of an executing system that
would otherwise be rendered in program code.
Representation in data form ensures that features
can be processed, modified, and replaced without
changing the program code. Since changing the
program code is the key reason for component
redeployment, our proposal is that this helps to
solve the problem identified above. Though the
approach involves a computational overhead, we
believe that the overhead should be acceptable
and the reification can serve as an initial step
towards eventual redeployment. The motivation
for the approach is described in a later section by
performing domain analysis leading to a proposal
for the key features that should be reified and a
case study in a following section that can be used
to validate the claim.

We have developed a simple component-based
language called μLEAP to represent the problem
and our proposed solution. The language is a
simplification of a larger language and associ-
ated tool-set called LEAP that has been used to
represent and analyze component-based case
studies. The features of μLEAP include higher-
order components and functions (those that can
take one or more components or functions as
inputs and output a component or a function) that
are used as the basis for the reification approach
described above. The implementation of μLEAP
that was used for all the examples in this chapter
is available1 to download as Racket source code.
The LEAP tool has been used on a variety of case
studies. A snapshot of the LEAP tool is available
to download2.

The chapter is organized as follows. The
background section covers the basics of service-

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/dynamic-reconfiguration-of-component-based-

systems/115424

Related Content

Validating Security Design Pattern Applications by Testing Design Models
Takanori Kobashi, Nobukazu Yoshioka, Haruhiko Kaiya, Hironori Washizaki, Takano Okuboand Yoshiaki

Fukazawa (2014). International Journal of Secure Software Engineering (pp. 1-30).

www.irma-international.org/article/validating-security-design-pattern-applications-by-testing-design-models/121680

Introduction
Neal G. Shaw (2001). Strategies for Managing Computer Software Upgrades (pp. 1-2).

www.irma-international.org/chapter/introduction/98484

Functional Method Engineering
S. B. Goyaland Naveen Prakash (2013). International Journal of Information System Modeling and Design

(pp. 79-103).

www.irma-international.org/article/functional-method-engineering/75465

Bilateral Histogram Equalization for Contrast Enhancement
Feroz Mahmud Amil, Shanto Rahman, Md. Mostafijur Rahmanand Emon Kumar Dey (2016). International

Journal of Software Innovation (pp. 15-34).

www.irma-international.org/article/bilateral-histogram-equalization-for-contrast-enhancement/166541

Model to Estimate the Human Factor Quality in FLOSS Development
Zulaima Chiquin, Kenyer Domínguez, Luis E. Mendozaand Edumilis Méndez (2015). Human Factors in

Software Development and Design (pp. 219-236).

www.irma-international.org/chapter/model-to-estimate-the-human-factor-quality-in-floss-development/117303

http://www.igi-global.com/chapter/dynamic-reconfiguration-of-component-based-systems/115424
http://www.igi-global.com/chapter/dynamic-reconfiguration-of-component-based-systems/115424
http://www.irma-international.org/article/validating-security-design-pattern-applications-by-testing-design-models/121680
http://www.irma-international.org/chapter/introduction/98484
http://www.irma-international.org/article/functional-method-engineering/75465
http://www.irma-international.org/article/bilateral-histogram-equalization-for-contrast-enhancement/166541
http://www.irma-international.org/chapter/model-to-estimate-the-human-factor-quality-in-floss-development/117303

