
44

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

Distributed and Adaptive
Business Process Execution:

A Scalable and Performant
Solution Architecture

ABSTRACT

Centralized business process execution engines are not adequate to guarantee smooth process execution
in the presence of multiple, concurrent, long-running process instances exchanging voluminous data.
In the centralized architecture of most BPEL engine solutions, the execution of BPEL processes is per-
formed in a closed runtime environment where process instances are isolated from each other, as well
as from any other potential sources of information. This prevents processes from finding relative data at
runtime to adapt their behavior in a dynamic manner. The goal of this chapter is to present a solution
for the performance improvement of BPEL engines by using a distributed architecture that enables the
scalable execution of service-oriented processes, while also supporting their data-driven adaptation.
The authors propose a decentralized BPEL engine architecture using a hypercube peer-to-peer topol-
ogy with data-driven adaptation capabilities that incorporates Artificial Intelligence (AI) planning and
context-aware computing techniques to support the discovery of process execution paths at deployment
time and improve the overall throughput of the execution infrastructure. The proposed solution is part
of the runtime infrastructure that was developed for the environmental science industry to support the
efficient execution and monitoring of service-oriented environmental science models.

Michael Pantazoglou
National and Kapodistrian University of

Athens, Greece

George Athanasopoulos
National and Kapodistrian University of

Athens, Greece

Aphrodite Tsalgatidou
National and Kapodistrian University of

Athens, Greece

Pigi Kouki
National and Kapodistrian University of

Athens, Greece

DOI: 10.4018/978-1-4666-6178-3.ch003

45

Distributed and Adaptive Business Process Execution
﻿

INTRODUCTION

Alongside high-level business process notation
languages such as BPMN 2.0 (OMG, 2011), Web
Services Business Process Execution Language
(Alves et al., 2007), abbreviated to WS-BPEL or
BPEL, is widely considered to be the de facto
standard for the implementation of executable
service-oriented business processes as composi-
tions of Web services.

In many cases, which have become evident in
various application domains, centralized BPEL
engines are clearly not adequate to guarantee
smooth process execution, and thereby ensure
client satisfaction in the presence of multiple, con-
current, long-running process instances exchang-
ing voluminous data. Indeed, as the numbers of
clients grow, the underlying infrastructure needs
to maintain and handle multiple process instances
while waiting for the external Web services that
are invoked to complete their execution.

In some cases, clustering techniques can be
employed to address the scalability issue, by dis-
patching the execution of each incoming process
request to the BPEL engine residing on the cluster
member with the lowest workload. However, the
deployment and maintenance of clusters consist-
ing of two or more centralized BPEL engines, sets
requirements on the underlying hardware resources
that cannot be always fulfilled by the involved
organizations. Furthermore, clustering could
prove to be an inefficient approach under certain
conditions, as it cannot overcome the emergence
of bottlenecks that are caused by specific activities
of a BPEL process. Moreover, as the execution of
a process instance still takes place in a centralized
manner, issues relating to large volumes of data
are not effectively addressed. In such context,
inevitably, the BPEL engine becomes bloated
with pending requests coming from multiple
concurrent clients. Hence, the overall throughput

of the execution infrastructure is dramatically
deteriorated, while the process execution times
escalate to unacceptable levels.

Aside from the aforementioned scalability is-
sues that derive from the centralized architecture
of most BPEL engine solutions, the execution of
BPEL processes is also performed in a closed
runtime environment. More specifically, process
instances are isolated from each other, as well as
from any other potential sources of information.
This prevents processes from finding and exploit-
ing relative data at runtime, in order to improve
their predefined behavior in a dynamic manner. By
relative data we refer to semantically annotated,
structured data that are semantically associated to
a given process. Instead, it becomes the responsi-
bility of the process designer to manually adapt
the process specification so as to accommodate
emerging data sources. For example, rendering
a weather calculation process able to incorpo-
rate data stemming from a satellite that was not
available during process design-time would deem
process redesign.

In order to address all these challenges, we
propose a decentralized BPEL engine architec-
ture with data-driven adaptation capabilities. Our
engine employs the hypercube peer-to-peer (P2P)
topology along with a set of distributed algorithms
in order to improve the average process execu-
tion times, and the enhancement of the overall
throughput of the execution infrastructure in the
presence of multiple, concurrent, and long-running
process instances.

In addition to the decentralized architecture, the
proposed engine accommodates the provisioning
of adaptable BPEL processes by exploiting infor-
mation available to the process environment along
with existing services. Adaptation in the context
of our approach is about the identification and use
of possible alternatives for the achievement of the
goals and sub-goals defined in a BPEL process;

30 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/distributed-and-adaptive-business-process-

execution/115423

Related Content

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets
Hyggo Oliveira de Almeida, Leandro Silva, Glauber Ferreira, Emerson Loureiroand Angelo Perkusich

(2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 3361-3380).

www.irma-international.org/chapter/validation-verification-software-systems-using/29566

A Holistic Trust Management Leasing Algorithm for IaaS Cloud
Hemant Kumar Mehtaand Rohit Ahuja (2014). International Journal of Systems and Service-Oriented

Engineering (pp. 1-12).

www.irma-international.org/article/a-holistic-trust-management-leasing-algorithm-for-iaas-cloud/114603

A Methodology for Software Maintenance
Macario Polo, Mario Piattiniand Francisco Ruiz (2003). Advances in Software Maintenance Management:

Technologies and Solutions (pp. 228-254).

www.irma-international.org/chapter/methodology-software-maintenance/4905

Design Patterns and Design Principles for Internal Domain-Specific Languages
Sebastian Günther (2013). Formal and Practical Aspects of Domain-Specific Languages: Recent

Developments (pp. 156-214).

www.irma-international.org/chapter/design-patterns-design-principles-internal/71820

Software Security Engineering: Design and Applications
Khaled M. Khan (2012). International Journal of Secure Software Engineering (pp. 62-63).

www.irma-international.org/article/software-security-engineering/64195

http://www.igi-global.com/chapter/distributed-and-adaptive-business-process-execution/115423
http://www.igi-global.com/chapter/distributed-and-adaptive-business-process-execution/115423
http://www.irma-international.org/chapter/validation-verification-software-systems-using/29566
http://www.irma-international.org/article/a-holistic-trust-management-leasing-algorithm-for-iaas-cloud/114603
http://www.irma-international.org/chapter/methodology-software-maintenance/4905
http://www.irma-international.org/chapter/design-patterns-design-principles-internal/71820
http://www.irma-international.org/article/software-security-engineering/64195

