
26

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

Dynamically Reconfigurable
Architectures:

An Evaluation of Approaches for
Preventing Architectural Violations

ABSTRACT

Dynamic aspects of behavior of software systems in dynamically reconfigurable runtime architectures
can result in significant architectural violations during runtime. In such cases, a system’s architecture
evolves during the runtime according to the actual state of the system’s environment, and consequently,
runtime reconfigurations may eventually lead to incorrect architecture configurations that were not
considered during the system’s design phases. These architectural violations are known as architectural
erosion or architectural drift, and they contribute to an increasing brittleness of the system, or a lack of
its coherence and clarity of its form. This chapter describes and compares possible measures to prevent
architectural violations in dynamic service and component models. The aim of this chapter is to evaluate
the applicability of those measures in combination with advanced features of reconfigurable runtime
architectures such as ad hoc reconfiguration, service or component mobility, composition hierarchy
preservation, and architectural aspects.

Marek Rychly
Brno University of Technology, Czech Republic

DOI: 10.4018/978-1-4666-6178-3.ch002

27

Dynamically Reconfigurable Architectures

INTRODUCTION

Current information systems tend to be designed
as component-based systems and often utilize
Service Oriented Architecture (SOA) and Web
service technology. The service orientation en-
ables decomposition of a complex software system
into a collection of cooperating and autonomous
components known as services. These services
cooperate with each other to provide a particular
functionality of the implemented software system
with defined quality.

Loose binding between the services, which
represent individual components of a system,
enables runtime reconfigurations of the system
architectures. In other words, it enables creat-
ing, destroying, and updating the services, and
establishing and destroying their interconnections
dynamically at runtime, on demand, and according
to various aspects to move the services into differ-
ent contexts and to different providers (i.e., service
mobility). Eventually, a series of reconfigurations
contributing to the evolution of the architecture,
of a supposedly well-designed system may lead
to incorrect architecture configurations that were
not considered during the system’s design phase.
These incorrect configurations are commonly
known as architectural violations.

This chapter describes and compares possible
measures to prevent the architectural violations,
as they are used in the current state-of-the-art
approaches. The goal is to evaluate applicabil-
ity of those measures in combination with the
advanced features of dynamic architecture such
as ad hoc reconfiguration, service or component
mobility, composition hierarchy preservation, and
architectural aspects.1 Specific objectives include
an introduction to the problems of dynamically
reconfigurable runtime architectures, an analysis
of the state-of-the-art approaches in this field

with focus on the advanced features of dynamic
architectures, and the methods to prevent archi-
tectural violations.

The chapter is organized as follows. The next
section deals with software architecture in general
and introduces component-based development
and service-oriented architecture with concepts of
dynamically reconfigurable runtime architectures.
We also describe several important state-of-the-art
works dealing with component-based development
and component models supporting features of dy-
namic and mobile architectures. In the following
section, we discuss existing problems relating to
the support of dynamic and mobile architectures
that cause architectural violations in component-
based or service-oriented systems.

Then, we outline possible strategic improve-
ments and introduce approaches to prevent the ar-
chitectural violations in general, and also describe
their applications in the current state-of-the-art
related works. The next part of the chapter deals
with the evaluation of the previously described
approaches for preventing architectural violations.
More specifically, we analyze compatibility of
the approaches with the advanced features of
dynamically reconfigurable runtime architectures.
Finally, we discuss future research directions such
as possibilities of utilization of the advanced
features of dynamically reconfigurable runtime
architectures including previously described
methods of preventing architectural violations in
implementations of service-oriented architectures.

BACKGROUND

According to IEEE (2000), software architecture
is defined as the fundamental organization of a
system, embodied in its components, their rela-
tionships to each other and the environment, and

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/dynamically-reconfigurable-architectures/115422

Related Content

Development of Machine Learning Software for High Frequency Trading in Financial Markets
Andrei Hryshkoand Tom Downs (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications (pp. 664-683).

www.irma-international.org/chapter/development-machine-learning-software-high/29415

Flow Based Classification for Specification Based Intrusion Detection in Software Defined

Networking: FlowClassify
Nithya Sampathand Dinakaran M. (2019). International Journal of Software Innovation (pp. 1-8).

www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-

defined-networking/223518

Software Component Survivability in Information Warfare
Joon S. Parkand Joseph Giordano (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications (pp. 3381-3390).

www.irma-international.org/chapter/software-component-survivability-information-warfare/29567

The Impact of Media Richness on the Usage of Web 2.0 Services for Knowledge Transfer
Albert Gyamfi (2018). Application Development and Design: Concepts, Methodologies, Tools, and

Applications (pp. 928-946).

www.irma-international.org/chapter/the-impact-of-media-richness-on-the-usage-of-web-20-services-for-knowledge-

transfer/188241

Analysis Method Based on Impression Words for Impression Evaluation Method by Space
Shunsuke Akai, Teruhisa Hochinand Hiroki Nomiya (2014). International Journal of Software Innovation

(pp. 48-59).

www.irma-international.org/article/analysis-method-based-on-impression-words-for-impression-evaluation-method-by-

space/120518

http://www.igi-global.com/chapter/dynamically-reconfigurable-architectures/115422
http://www.irma-international.org/chapter/development-machine-learning-software-high/29415
http://www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-defined-networking/223518
http://www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-defined-networking/223518
http://www.irma-international.org/chapter/software-component-survivability-information-warfare/29567
http://www.irma-international.org/chapter/the-impact-of-media-richness-on-the-usage-of-web-20-services-for-knowledge-transfer/188241
http://www.irma-international.org/chapter/the-impact-of-media-richness-on-the-usage-of-web-20-services-for-knowledge-transfer/188241
http://www.irma-international.org/article/analysis-method-based-on-impression-words-for-impression-evaluation-method-by-space/120518
http://www.irma-international.org/article/analysis-method-based-on-impression-words-for-impression-evaluation-method-by-space/120518

