
1

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-4666-6178-3.ch001

Service-Driven Computing:
Challenges and Trends

ABSTRACT

Information technology is rapidly evolving to facilitate the design, development, and implementation of
the next generation of architectural practices, tools, and techniques that will enable smart services and
seamless enterprise integration. Service-Driven Computing involves the use of software services that con-
form to service architectural paradigms, such as Service-Oriented and Resource-Oriented Architectures,
to drive computing solutions that enable building massively distributed software systems for this new
generation of applications. Although services can promote agile, flexible, and extensible applications,
service invocations can be subject to network latency, network failure, and distributed system failures.
Moreover, service configurations are likely to change over time. This chapter explores the challenges
in service-driven computing relating to composing adaptive services dynamically, supporting context-
awareness and autonomic capabilities in services, verification of dynamic service compositions, and
extending the service-driven paradigm to the Cloud. Along the way, contributions from researchers on
potential solutions to these challenges are identified and discussed.

Raja Ramanathan
Independent Researcher, USA

2

Service-Driven Computing
﻿

INTRODUCTION

Software architecture has evolved from simple
monolithic concepts to complex, multi-tiered,
distributed, and componentized abstractions. A
Service Oriented Architecture (SOA) (Pasik, 1994)
style involves the use of software services, which
are loosely coupled, autonomous, distributable,
composable, and platform-independent computa-
tional entities that enable applications to publish,
discover, and invoke business services (services
that fulfill business functionality) using standard-
ized service contracts and protocols, SOAP com-
pliant XML messaging, and business events. On
the other hand, a Resource Oriented Architecture
(ROA) style focuses on the resource, which is a
directly-accessible software artifact supporting
specific data as the key element of abstraction and
emphasizing simplicity, scalability, and usability.
Representational State Transfer (REST) (Fielding,
2000) is a set of architectural guidelines expressed
as ROA that takes into account the constraints of
the World Wide Web’s standard HTTP messaging
model to facilitate the design of RESTful services
that are resource-oriented.

While Service-oriented Computing (SOC)
(Georgakopoulos & Papazoglou, 2008) is closely
aligned with SOA, Service-driven Computing is
primarily implemented by software services that
conform to any pertinent service architecture
methodology such as SOA and ROA. Service-
driven Computing (Ramanathan, 2013a) uses these
software services to drive computing solutions
in which new business and scientific services
are created by assembling granular application
services (atomic and composite services) that
interact through standard messaging mechanisms.
Applications and integration solutions are as-
sembled through Service Mediation and Service
Composition techniques. SOA and REST are cur-
rently the most widely used architectural styles

for implementing service-driven applications and
integration solutions that support the dynamics of
the organization.

Based on a vendor agnostic architecture model,
service-driven applications will enable an enter-
prise to evolve the infrastructure in alignment
with the needs of the organization and provide
the flexibility for vendor diversification in terms
of platforms and products. Service-driven com-
puting will help enterprises to achieve increased
return on investment (ROI) and lower total cost of
ownership (TCO) due to the agility and reusability
inherent in the methodology. Through the use of
the service-oriented middleware, service-driven
computing has enabled the reduction in software
development complexity and costs and has been
able to simplify the provisioning, management,
and monitoring of business and scientific applica-
tions and services.

The typical software lifecycle of a service-
driven architectural approach comprises several
phases including service modeling, service real-
ization, composite assembly, service versioning,
service deployment, monitoring, and governance.
The service-driven approach enables enterprises
to build massively distributed software systems
by enabling the assembly of composite services
dynamically in a programming language and op-
erating system agnostic manner and through the
use of standard architectural styles, artifacts, and
protocols. It facilitates the building of complex
business and scientific processes from existing
coarse grained service components based on a
building blocks model and helps to effectively
align business and scientific application require-
ments with technology. This approach empowers
the Information Technology team to deliver appli-
cations that support and meet the dynamic needs
of the organization in an agile manner.

Web Services are currently the most widely
used technology that utilizes the SOA and REST

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/service-driven-computing/115421

Related Content

Studying Individualized Transit Indicators Using a New Low-Cost Information System
P. A. Castillo, A. Fernández-Ares, P. García-Fernández, P. García-Sánchez, M. G. Arenas, A. M. Mora, V.

M. Rivas, J. J. Asensio, G. Romeroand J. J. Merelo (2014). Handbook of Research on Embedded Systems

Design (pp. 388-407).

www.irma-international.org/chapter/studying-individualized-transit-indicators-using-a-new-low-cost-information-

system/116119

A Novel Approach of Load Balancing and Task Scheduling Using Ant Colony Optimization

Algorithm
Selvakumar A.and Gunasekaran G. (2019). International Journal of Software Innovation (pp. 9-20).

www.irma-international.org/article/a-novel-approach-of-load-balancing-and-task-scheduling-using-ant-colony-

optimization-algorithm/223519

A Study on the Factors Causing the Intention to Use a Smart Tolling System
Sung il Hur, Yong gi Parkand Jin won Jang (2022). International Journal of Software Innovation (pp. 1-17).

www.irma-international.org/article/a-study-on-the-factors-causing-the-intention-to-use-a-smart-tolling-system/304877

Choosing the Optimized OS for an MPSoC Embedded System
Abderrazak Jemai (2011). Reconfigurable Embedded Control Systems: Applications for Flexibility and

Agility (pp. 434-443).

www.irma-international.org/chapter/choosing-optimized-mpsoc-embedded-system/50438

Towards a More Systematic Approach to Secure Systems Design and Analysis
Simon Miller, Susan Appleby, Jonathan M. Garibaldiand Uwe Aickelin (2013). International Journal of

Secure Software Engineering (pp. 11-30).

www.irma-international.org/article/towards-more-systematic-approach-secure/76353

http://www.igi-global.com/chapter/service-driven-computing/115421
http://www.irma-international.org/chapter/studying-individualized-transit-indicators-using-a-new-low-cost-information-system/116119
http://www.irma-international.org/chapter/studying-individualized-transit-indicators-using-a-new-low-cost-information-system/116119
http://www.irma-international.org/article/a-novel-approach-of-load-balancing-and-task-scheduling-using-ant-colony-optimization-algorithm/223519
http://www.irma-international.org/article/a-novel-approach-of-load-balancing-and-task-scheduling-using-ant-colony-optimization-algorithm/223519
http://www.irma-international.org/article/a-study-on-the-factors-causing-the-intention-to-use-a-smart-tolling-system/304877
http://www.irma-international.org/chapter/choosing-optimized-mpsoc-embedded-system/50438
http://www.irma-international.org/article/towards-more-systematic-approach-secure/76353

