
 M

5455

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Mathematics

DOI: 10.4018/978-1-4666-5888-2.ch538

Hardware Design for Decimal Multiplication

INTRODUCTION

The IEEE-754 2008 standard for floating point arith-
metic has definitely dictated the importance of decimal 
arithmetic. Human-centric applications, like financial 
and commercial, depend on decimal arithmetic since 
the results must match exactly those obtained by human 
calculations. Decimal multiplication is a fundamental 
operation utilized in many algorithms, including algo-
rithms for decimal division. Decimal multiplication is 
more complicated than binary multiplication due to the 
inherent difficulty to represent decimal numbers using 
a binary number system. Both bit and digit carries, as 
well as invalid results, must be considered in decimal 
multiplication in order to produce the correct result.

This article focuses on algorithms for hardware 
implementation of decimal multiplication. We describe 
decimal fixed-point and floating-point multiplication, 
including iterative and parallel solutions.

BACKGROUND

Usually, humans perform arithmetic operations by hand 
using decimal arithmetic. However, most computers 
do it with binary arithmetic. It means that performing 
decimal operations in a computer without support for 
decimal arithmetic is subject to errors from represent-
ing decimal numbers, converting them and rounding. 
In fact, it is easy find decimal numbers that cannot be 
represented exactly in binary format (e.g., 0.1). Several 
examples exist where errors due to binary calculation 
of decimal numbers are obtained. A clarifying example 
came from the Vancouver Stock Exchange (Quinn, 
1983), where due to rounding errors an initial index 
value of 1000.000 dropped to 574.081 instead of the 
correct result of 1098.892.

In fact, the business and commercial markets were 
one of the triggers for the importance of decimal com-
puter arithmetic since many commercial databases 
have more than 50% of the numerical data represented 
in decimal (Tsang & Olschanowsky, 1991). In these 
cases, to avoid errors with undesirable consequences 
it is important to have a complete system to support 
decimal arithmetic.

At the era of electronic computers, both binary 
and decimal arithmetic functions were considered. We 
had computer systems, like the ENIAC (Goldstine & 
Goldstine, 1996) and IBM 650 (Knuth, 1986) imple-
menting arithmetic functions in decimal, and others like 
EDSAC (Wilkes, 1997) and EDVAC (Williams, 1993) 
that adopted binary based arithmetic implementations. 
Both arithmetic systems were still considered after 
the advent of transistorized computers with decimal 
numbers represented with four bits following different 
representations, like in Binary-Coded Decimal (BCD) 
format. However, soon binary arithmetic was adopted 
by most computer systems since at that time scientific 
computing, whose operations could be more efficiently 
implemented in binary, were more in demand than 
financial computing that requires decimal arithmetic 
to avoid costs from representation errors. So, binary 
became very popular, while decimal was supported 
only by some computers in the 1960s and 1970s.

Precise decimal arithmetic operations with binary 
based computing systems are done with software. In 
some cases, these binary-based computing systems 
include some specific hardware instructions that are 
hardware supported and so software algorithms can 
take advantage of them to speed-up execution. Sev-
eral languages include primate decimal datatypes, 
including Ada, COBOL, and SQL. Several other lan-
guages support the GDAS (General Decimal Arithmetic 
Specification) (Cowlishaw, 2008), including the IBM 
C DecNumber Library (Cowlishaw), the Java BigDeci-

Mário P. Véstias
INESC-ID/ISEL/IPL, Portugal

Horácio C. Neto
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal



Category: Mathematics

 M

Hardware Design for Decimal Multiplication

5456

mal (Sun Microsystems), Eiffel Decimal Arithmetic 
(Crismer), Python Decimal (Batista), among others. 
Decimal floating point extensions conforming to the 
IEEE 754-2008 standard were proposed for C (JTC 1, 
2007) and C++ (JTC 1, 2008) languages. These exten-
sions were supported by GNU C compiler 4.2 release. 
Intel has also developed a decimal floating-point math 
library (Intel) that implements decimal floating-point 
arithmetic specified in IEEE 754-2008.

Hardware support for decimal arithmetic is needed 
if the percentage of time spent executing decimal func-
tions from these software libraries is relevant. Two 
different perspectives have emerged in the end of the 
last decade. Wang (Wang, L.-K., et al., 2007), examined 
several financial benchmarks and concluded that the 
time spent on executing decimal operations ranged 
from 33.9% to 93.1%. On the contrary, a research from 
Intel (Cornea & Crawford, 2007) concluded that most 
commercial applications spend less than 5% executing 
decimal operations. Therefore, hardware for decimal 
arithmetic is not a priority in the design of Intel’s pro-
cessors. In fact, Intel x86 processors offer only a set of 
eight fixed-point decimal arithmetic instructions, and 
Motorola 68K reduces this set to just five instructions. 
On the other side, several IBM’s processors include 
a considerable support for decimal arithmetic. The 
S/390 processor (ESA/390, 2001) includes a dedicated 
decimal adder to execute decimal fixed point addition, 
subtraction, multiplication and division. The last two, 
are executed iteratively using additions and subtrac-
tions. The IBM System z9 (Duale, et al., 2007) and 
System z10 (Schwarz, Kapernick, & Cowlishaw, 2009) 
already include a decimal floating-point arithmetic 
unit in conformance with IEEE 754-2008 standard. 
The GNU C Compiler (GCC) 4.3 Release and several 
compilers from IBM (e.g., IBM XL C/C++ (IBM)) 
were extended and developed to utilize the dedicated 
instructions and hardware units present in these IBM’s 
processors.

DECIMAL MULTIPLICATION

Hardware implementations for decimal multiplication 
can be classified according to the type of operands to 
be multiplied as fixed or floating-point, whether the 
operands are fixed or floating-point, respectively.

Fixed-point multiplication follows generically 
the typical hand process that starts by generating 
partial products, followed by reduction of the partial 
products using decimal addition. The process can be 
either based on iterative or parallel algorithms. In the 
iterative approach partial products are generated and 
accumulated step-by-step in an iterative process, while 
in the parallel case partial products are generated in 
parallel and added with an adder tree.

Decimal floating-point multiplication typically 
uses a fixed-point decimal multiplier to multiply the 
trailing significant fields, together with exponent 
addition, rounding and sign calculation, similar to a 
binary multiplier.

In the following, the basic algorithms and architec-
tures of each type of decimal multiplier are introduced 
together with state-of-the-art proposals based on each 
of these types.

DECIMAL FIXED-POINT 
MULTIPLICATION

Whether in the iterative or in the parallel method, partial 
product generation in a fixed-point multiplication can be 
either the result of digit by digit, digit by word or word 
by word multiplication. In a digit by digit multiplica-
tion process each digit of the multiplier is multiplied 
by a digit of the multiplicand. A faster approach is 
to multiply each digit of the multiplier by the whole 
multiplicand, that is, a multiple of the multiplicand is 
accumulated for each digit of the multiplier. Word by 
word multiplication is a method that seeks to reduce 
the number of partial products at the cost of more 
complex partial product generation.

Digit by Digit Multiplication Design

Different designs are obtained for digit by digit itera-
tive multiplication depending on the how the digits 
are traversed. One approach consists on multiplying a 
digit of the multiplier by all digits of the multiplicand 
from the least significant digit to the most significant 
digit. Thus, the multiplier must run all digits for each 
digit of the multiplier (see Figure 1a).

At each step, a new digit by digit product must be 
added to the accumulated partial product using an n 



 

 

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/hardware-design-for-decimal-

multiplication/112996

Related Content

Reversible Data Hiding Scheme for ECG Signal
Naghma Tabassumand Muhammed Izharuddin (2018). International Journal of Rough Sets and Data

Analysis (pp. 42-54).

www.irma-international.org/article/reversible-data-hiding-scheme-for-ecg-signal/206876

Forecasting Water Demand With the Long Short-Term Memory Deep Learning Mode
Junhua Xu (2024). International Journal of Information Technologies and Systems Approach (pp. 1-18).

www.irma-international.org/article/forecasting-water-demand-with-the-long-short-term-memory-deep-learning-

mode/338910

Interpersonal Coordination in Computer-Mediated Communication
Jamonn Campbell (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2079-

2088).

www.irma-international.org/chapter/interpersonal-coordination-in-computer-mediated-communication/112615

Generalize Key Requirements for Designing IT-Based System for Green with Considering

Stakeholder Needs
Yu-Tso Chen (2013). International Journal of Information Technologies and Systems Approach (pp. 78-97).

www.irma-international.org/article/generalize-key-requirements-designing-based/75788

Agile Scrum
Kenneth R. Walshand Sathiadev Mahesh (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 7018-7025).

www.irma-international.org/chapter/agile-scrum/112400

http://www.igi-global.com/chapter/hardware-design-for-decimal-multiplication/112996
http://www.igi-global.com/chapter/hardware-design-for-decimal-multiplication/112996
http://www.irma-international.org/article/reversible-data-hiding-scheme-for-ecg-signal/206876
http://www.irma-international.org/article/forecasting-water-demand-with-the-long-short-term-memory-deep-learning-mode/338910
http://www.irma-international.org/article/forecasting-water-demand-with-the-long-short-term-memory-deep-learning-mode/338910
http://www.irma-international.org/chapter/interpersonal-coordination-in-computer-mediated-communication/112615
http://www.irma-international.org/article/generalize-key-requirements-designing-based/75788
http://www.irma-international.org/chapter/agile-scrum/112400

