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INTRODUCTION

In the aerospace field, where satellites and spacecraft 
contain numerous components that require constant, yet 
indirect, surveillance of large amounts of data, monitor-
ing tools give the operators constant access to the state 
of the machinery, facilitating prompt and appropriate 
responses to any problems that may arise. 

The objective of developing a Venus Express alarm 
system (Steel, 2006) is to monitor the thermal charac-
teristics of each spacecraft face with respect to space-
craft altitude relative to the sun’s position. A thermal 
alarm monitoring tool assumes particular importance 
in the Venus Express mission as the spacecraft will 
be subject to high levels of solar radiation due to its 
proximity to the sun.

In the space context, in particular for mission-
control purposes, fuzzy inference systems provide a 
suitable technique to build this type of alarm system 
because the knowledge is imprecise or partial, going 
beyond the use of traditional, that is, crisp, methods 
(Ribeiro, 2006). Furthermore, the fuzzy linguistic ap-
proach used (Mendel, 2001; Ross, 2004) allows for an 
effective complement to human operators by creating 
systems that can support their actions in case of any 
fault detected. 

In this article, we discuss the design and develop-
ment of a fuzzy thermal alarm system for the Venus 
Express spacecraft using a new inference scheme, the 
Choquet-TSK (Marques Pereira, Ribeiro, & Serra, in 
press; Marques Pereira, Serra, & Ribeiro, 2006). The 
new inference scheme is based on the integration of 
the Choquet integral (Grabisch, 1995, 1996, 1997) in 
a fuzzy inference system of the Takagi-Sugeno-Kang 
(TSK) type (Sugeno & Kang, 1986; Takagi & Sugeno, 

1985). This integration allows expressing synergies 
between rules, and the necessary combined weights 
are obtained by using correlation matrices (Marques 
Pereira & Bortot, 2004; Marques Pereira, Ribeiro, 
& Serra). The new Choquet-TSK inference scheme 
together with a defined fuzzy-rule base is the basis 
of the thermal alarm system for the Venus Express 
spacecraft, developed within the context of a European 
Space Agency (ESA) project (AO/1-4635/04/N/ML). 
The main motivation behind this work was to show that 
expressing synergies between rules could improve the 
reliability of space monitoring alarm systems.  

BACKGROUND

fuzzy Inference Systems

Fuzzy inference systems (FISs), sometimes also called 
fuzzy expert systems or fuzzy knowledge-based systems 
(see, for example, Zimmerman, 1996), express their 
knowledge through fuzzy linguistic variables (Mendel, 
2001; Ross, 2004; Zadeh, 1987), whose role is to define 
the semantics of the problem. Then, by means of the 
fuzzy linguistic variables formulation, the linguistic 
variables are characterized and quantified. FISs also 
include a set of rules that define the way knowledge 
is structured and an inference scheme that constitutes 
the reasoning process toward the result. 

A typical FIS (Mendel, 2001; Ross, 2004; Wang, 
1997) includes the following steps: (a) “fuzzification” 
of the input variables, (b) definition of the output vari-
ables, (c) definition of the rule base, and (d) selection of 
the inference scheme (operators, implication method, 
and aggregation process). In some inference schemes, 
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for example, the Mamdani model (Mamdani, 1976), a 
“defuzzification” method is also required to transform 
the fuzzy output result into a crisp output. Here, because 
we follow the Takagi-Sugeno-Kang model (Sugeno & 
Kang, 1986; Takagi & Sugeno, 1985), which comprises 
fuzzy inputs but crisp outputs, we will not discuss 
defuzzification methods. 

Fuzzification of the inputs implies their definition 
as fuzzy linguistic variables (Zadeh, 1987). Formally, 
a linguistic variable is characterized by the five-tuple 
(X,T,U,G,M), where X is the name of the linguistic 
variable; T is the set of linguistic terms, in which the 
linguistic variables X take values; U is the actual physi-
cal domain in which the linguistic variable X takes its 
crisp values; G is a syntactic rule that creates the terms 
in the term set; and M is a semantic rule that relates 
each label in T with a fuzzy set in U. For example, 
height={short, average, tall} is a linguistic variable 
with three terms, where each label is represented by a 
fuzzy set. A fuzzy set represents the membership degree 
of objects of a specific term or set (Zadeh). 

The definition of the outputs depends on the FIS 
model selected and can be divided in two main classes 
(Mendel, 2001): the Mamdani type, which uses fuzzy 
inputs and fuzzy outputs, and the Takagi-Sugeno-Kang 
type, which uses fuzzy inputs but crisp outputs. The 
Mamdani consequents are usually represented by lin-
guistic variables, while the TSK consequents are usually 
a function of the inputs. In our application, we only use 
constants for the output functions (TSK model). 

The developer and domain expert in close col-
laboration usually define the rules for the inference 
system application. The domain expert is essential for 
the definition of the rule set because rules represent 
existing relations between input variables and the de-
sired conclusion, and they have knowledge about those 
relations. A fuzzy rule is usually defined as:

1 1 ... n nIF X is A AND AND X is A THEN Y ,

where kX  are the variables considered, kA  are the 
fuzzy terms of linguistic variables representing the 
variables considered, and Y  is either a fuzzy term of 
a fuzzy output (Mamdani-type model) or a function 
(TSK-type model). For example, for a TSK model, the 
rule “IF Service is excellent THEN Tip=25” expresses 
that if the service in a restaurant is excellent (where 
excellent is defined by a fuzzy set), the tip should be 

25% of the meal cost. For a Mamdani model, the rule 
“IF Service is excellent THEN Tip=high” expresses that 
if service is good, the tip should be high (where high 
is a fuzzy term of the linguistic output Tip). 

The inference scheme process encompasses two 
phases for performing the inference (reasoning) of 
the application: the individual rule implication, which 
applies to all rules of the rule set, and the rule aggrega-
tion process, to reach a final result for a FIS. There are 
many implication operators to derive the conclusion 
for each rule (Lee, 1990; Wang, 1997; Zimmermann, 
1996). However, the most used for FIS implication 
are, as mentioned before, the Mamdani one (minimum 
operator) and the TSK one (function of the inputs). The 
aggregation process, for all the rules implication values, 
depends, again, on the inference scheme selected. The 
Mamdani scheme proposes the max operator (many 
other operators could be used as can be seen in Wang;  
Zimmermann) while the TSK model uses a weighted 
average, where the weights are the normalized firing 
levels of each rule (Mendel, 2001; Ross, 2004). 

New Choquet-TSK Inference Scheme

The Choquet integral (Grabisch, 1995, 1997) is an 
operator capable of aggregating discrete sets of clas-
sifications for decision-making variables, taking into 
account the relations (synergies) that exist between 
those variables. It is an extension of the simple aver-
age weighting method (Grabisch, 1995). In a FIS, the 
relations between variables can assume three different 
forms: complementarity between rules, redundancy 
(or a certain degree of overlapping) between rules, 
and an intermediate case or independence. In the 
Choquet-TSK approach (Marques-Pereira, Ribeiro, 
& Serra, in press; Marques-Pereira, Serra, & Ribeiro, 
2006), the individual weights correspond to the firing 
levels of each rule, and relations are represented by a 
fuzzy measure (Murofushi & Sugeno, 1991), acting as 
a structure of relative weights. The basic rationale is 
that if the firing levels for two rules are systematically 
similar, then those rules encode the same information 
and thus have a degree of redundancy; the joint weight 
that they have in the aggregation (their firing levels) 
should decrease. If, on the other hand, the firing levels 
for two rules are systematically opposite, then those 
rules encode complementary information and are thus 
important; the joint weight that they have in the ag-
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