
Category: Engineering Science

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2854

Dealing with Completeness in 
Requirements Engineering

INTRODUCTION

The Requirements Engineering (RE) goal is to sys-
tematize the process of requirements construction and 
management (Maculay, 1993; Reubenstein & Waters, 
1991; Maté & Silva, 2005) along with the creation of 
a compromise among clients and users with develop-
ers, since both human groups must participate and 
collaborate together. To accomplish such tasks, the 
requirements engineers should understand and par-
ticipate in the definition of the context of use for the 
software system to be developed. The requirements 
engineers usually ignore totally or partially both, the 
current and the foreseen future context of use. The 
latter must be conceived having as a resource the new 
tool: the system software itself. Frequently, nobody 
knows in detail such future context of use. To be able 
to participate in the definition of the future business 
process, the requirements engineers must understand 
the current business process in advance. Therefore, the 
Requirements Engineering process involves, as the first 
step, elicitation and modeling of the current business 
process and later, definition and modeling of the future 
business process. Both models have different purposes. 
The first one is used as a help for understanding the 
current business process and as a tool to validate with 
clients and users such understanding. The second one 
is used as a help for the planning of the future busi-
ness process, to validate such plans with the clients 

and users, to specify the software requirements and to 
give an environment reference for software designers.

The Requirements Engineering process consists 
of three main activities: elicitation, modeling, and 
analysis of the application domain (Kotonya & Som-
merville, 1998; Sommerville & Sawyer, 1997). Analysis 
includes the sub-activities of verification, validation 
and negotiation. The difficulties that requirements 
engineers must face to understand and elicit the clients 
and users’ necessities are widely known. The more 
complex the application domain, the more difficult 
the definition or construction of software requirements 
becomes. Many times, requirements engineers must 
become themselves problem domain experts during 
the acquisition of knowledge about the application 
domain. Concurrently, Requirements Management 
deals with the changes in the existent requirements and 
the irruption of new ones (Kotonya & Sommerville, 
1998; Sawyer & Kotonya, 2004).

RE provides methods, techniques and tools to 
help requirements engineers elicit and specify soft-
ware requirements, ensuring their highest quality and 
completeness. However, the problem of completeness 
is a certain menace to requirements quality and it casts 
serious doubt on the whole Requirements Engineering 
process. Completeness is an unreachable goal and to 
estimate the degree of completeness obtained at a certain 
step in the software development process is also very 
difficult (Doorn & Ridao, 2008). The requirements 
engineer faces a Universe of Discourse (UofD) that 

Graciela D. S. Hadad
FITI, Universidad de Belgrano, Argentina & DIIT, Universidad Nacional de La Matanza, Argentina

Claudia S. Litvak
FITI, Universidad de Belgrano, Argentina & DIIT, Universidad Nacional de La Matanza, Argentina

Jorge H. Doorn
INTIA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina & DIIT, Universidad 
Nacional de La Matanza, Argentina

Marcela Ridao
INTIA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

DOI: 10.4018/978-1-4666-5888-2.ch279



Dealing with Completeness in Requirements EngineeringCategory: Engineering Science

 E

2855

seems she / he will hardly ever fully know. This situation 
is not unique during the whole software development 
process; something similar happens while testing.

The use of statistical models, based on capture 
and recapture methods (Otis, Burnham, White, & 
Anderson, 1978) to predict the number of defects in a 
code artifact, was successfully introduced some time 
ago (Petersson, Thelin, Runeson, & Wohlin, 2003) and 
later, these models have been used to discover defects in 
requirements documents (Walia & Carver, 2008). In this 
article, the use of capture and recapture information is 
applied in the RE field in order to make an estimation 
of the number of non-discovered requirements after a 
requirements elicitation process.

The following section analyses the validation prob-
lem in RE. Then, a section describing the use of the 
Language Extended Lexicon (LEL) and Scenarios in 
RE is included. After that, the problem of estimating 
closed population is studied. Later, the use of capture 
and recapture in RE domain is introduced; finally, some 
future work and conclusions are presented.

BACKGROUND

No method in Software Engineering can ensure that 
enough information has been elicited and modeled to 
develop a software system that covers all the expecta-
tions and necessities of clients and users. Incomplete-
ness negatively influences the quality of any produced 
artifact, such as a requirements model, a design model 
or a software component. The completeness problem in 
Software Engineering and Requirements Engineering is 
very similar to others in many areas of knowledge. Otis 
(Otis, Burnham, White, & Anderson, 1978) introduced 
a method to estimate the size of a closed population 
of wild animals based on the data gathered during 
repetitive capture of specimens. This method has been 
extended to the area of software inspections by several 
authors (Briand, El Emam, Freimut, & Laitenberger, 
2000; Biffl, 2003; Thelin, 2004; Petersson, Thelin, 
Runeson, & Wohlin, 2003; Wohlin & Runeson, 1998) 
in order to estimate the number of undiscovered defects.

Requirements validation has become a complex 
task, mainly due to the kind of representation models 
used which require clients and users with special skills to 
understand them. As it is pointed out by several authors 
(Sommerville & Sawyer, 1997; Cysneiros & Yu, 2004), 

the requirements validation seldom discovers all de-
fects, and the remaining defects reach later stages in the 
software development process. It has been proven that 
the use of natural language representation for require-
ments helps validation, especially when requirements 
are expressed using the client and user’s vocabulary 
(Leite & Franco, 1990). To be able to provide such rep-
resentation, the requirements engineer should acquire 
the clients and users’ vocabulary. However, ambiguity 
is the main drawback of the natural language approach 
(Jackson, 1995; Sommerville & Sawyer, 1997; Berry 
& Kamsties, 2004). The construction of a glossary of 
clients and users’ jargon helps reduce ambiguity and 
build the requirements specification in an ́ understand-
able´ language, mainly for clients and users. Several 
experiences have shown that a glossary of clients and 
users’ vocabulary is, in itself, a source of information to 
elicit valuable UofD information (Ben Achour, Rolland, 
Maiden, & Souveyet, 1999; Rolland & Ben Achour, 
1998; Oberg, Probasco, & Ericsson, 1998; Regnell, 
1999; Weidenhaupt, Pohl, Jarke, & Haumer, 1998).

In this entry, a Requirements Engineering process 
which begins with the construction of a Language 
Extended Lexicon (LEL) as its first activity (Leite, 
Doorn, Kaplan, Hadad, & Ridao, 2004) is addressed 
in order to analyze the impact of completeness. In 
this process, the LEL construction is followed by the 
building of Scenarios to understand and model the 
current UofD, and later, by the building of another set 
of Scenarios to figure out how the future UofD could 
be and to model it. Finally, this process ends extract-
ing requirements from the latter set of Scenarios and 
producing a Software Requirements Specification.

THE REQUIREMENTS 
ENGINEERING PROCESS

The backbone of the Requirements Engineering 
process is to anchor every model in the UofD vocabu-
lary. Knowledge acquired by means of observations, 
document reading, interviews and other elicitation 
techniques is first modeled using LEL and later using 
Scenarios (Leite, Hadad, Doorn, & Kaplan, 2000). LEL 
and Scenarios are verified for internal consistency and 
validated with the collaboration of clients and users. 
During Verification and Validation, completeness is 
a key issue since several guidelines for LEL and Sce-



 

 

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/dealing-with-completeness-in-requirements-

engineering/112706

Related Content

Serious Games Advancing the Technology of Engaging Information
Peter A. Smithand Clint Bowers (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 3327-3336).

www.irma-international.org/chapter/serious-games-advancing-the-technology-of-engaging-information/184044

Empirical Investigation of Critical Success Factors for Implementing Business Intelligence

Systems in Multiple Engineering Asset Management Organisations
William Yeoh (2009). Information Systems Research Methods, Epistemology, and Applications (pp. 247-

271).

www.irma-international.org/chapter/empirical-investigation-critical-success-factors/23479

Towards an Interdisciplinary Socio-Technical Definition of Virtual Communities
Umar Ruhi (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 4278-4295).

www.irma-international.org/chapter/towards-an-interdisciplinary-socio-technical-definition-of-virtual-communities/184134

Efficient Ordering Policy for Imperfect Quality Items Using Association Rule Mining
Mandeep Mittal, Sarla Pareekand Reshu Agarwal (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 773-786).

www.irma-international.org/chapter/efficient-ordering-policy-for-imperfect-quality-items-using-association-rule-

mining/112392

Systems and Software Engineering in IT System Development
Marcel Jacques Simonetteand Edison Spina (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 7381-7389).

www.irma-international.org/chapter/systems-and-software-engineering-in-it-system-development/112435

http://www.igi-global.com/chapter/dealing-with-completeness-in-requirements-engineering/112706
http://www.igi-global.com/chapter/dealing-with-completeness-in-requirements-engineering/112706
http://www.irma-international.org/chapter/serious-games-advancing-the-technology-of-engaging-information/184044
http://www.irma-international.org/chapter/empirical-investigation-critical-success-factors/23479
http://www.irma-international.org/chapter/towards-an-interdisciplinary-socio-technical-definition-of-virtual-communities/184134
http://www.irma-international.org/chapter/efficient-ordering-policy-for-imperfect-quality-items-using-association-rule-mining/112392
http://www.irma-international.org/chapter/efficient-ordering-policy-for-imperfect-quality-items-using-association-rule-mining/112392
http://www.irma-international.org/chapter/systems-and-software-engineering-in-it-system-development/112435

