
��

CContext in Decision Support Systems
Development
Alexandre Gachet
University of Hawaii at Manoa, USA

Ralph Sprague
University of Hawaii at Manoa, USA

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Finding appropriate decision support systems (DSS)
development processes and methodologies is a topic
that has kept researchers in the decision support com-
munity busy for the past three decades at least. Inspired
by Gibson and Nolan’s curve (Gibson & Nolan 1974;
Nolan, 1979), it is fair to contend that the field of DSS
development is reaching the end of its expansion (or
contagion) stage, which is characterized by the pro-
liferation of processes and methodologies in all areas
of decision support. Studies on DSS development
conducted during the last 15 years (e.g., Arinze, 1991;
Saxena, 1992) have identified more than 30 different
approaches to the design and construction of decision
support methods and systems (Marakas, 2003). Interest-
ingly enough, none of these approaches predominate
and the various DSS development processes usually
remain very distinct and project-specific. This situa-
tion can be interpreted as a sign that the field of DSS
development should soon enter in its formalization
(or control) stage. Therefore, we propose a unifying
perspective of DSS development based on the notion
of context.

In this article, we argue that the context of the target
DSS (whether organizational, technological, or devel-
opmental) is not properly considered in the literature
on DSS development. Researchers propose processes
(e.g., Courbon, Drageof, & Tomasi, 1979; Stabell 1983),
methodologies (e.g., Blanning, 1979; Martin, 1982;
Saxena, 1991; Sprague & Carlson, 1982), cycles (e.g.,
Keen & Scott Morton, 1978; Sage, 1991), guidelines
(e.g., for end-user computer), and frameworks, but
often fail to explicitly describe the context in which
the solution can be applied.

BACKGROUND

A DSS is broadly considered as “a computer-based
system that aids the process of decision making”
(Finlay, 1994). Sprague uses a definition that indicates
key components of the DSS architecture. A DSS is a
“computer-based system which helps decision makers
confront ill-structured problems through direct interac-
tion with data and analysis models” (Sprague, 1980).
In a more detailed way, Turban (1995) defines it as “an
interactive, flexible, and adaptable computer-based in-
formation system, especially developed for supporting
the solution of a non-structured management problem
for improved decision making. It utilizes data, provides
an easy-to-use interface, and allows for the decision
maker’s own insights.” This second definition gives a
better idea of the underlying architecture of a DSS. Even
though different authors identify different components
in a DSS, academics and practitioners have come up
with a generalized architecture made of six distinct
parts: (a) the data management system, (b) the model
management system, (c) the knowledge engine, (d) the
user interface, (e) the DSS architecture and network,
and (f) the user(s) (Marakas, 2003;Power, 2002).

One section this article, Key Terms, briefly defines
nine DSS development methodologies popular in the
DSS literature. A typical methodology is represented
by the steps in Table 1.

1. Identify requirements specifications
2. Preliminary conceptual design
3. Logical design and architectural specifications
4. Detailed design and testing
5. Operational implementation
6. Evaluation and modification
7. Operational deployment

Table 1. Phases of the DSS design and development
life cycle (Sage, 1991)

��

Context in Decision Support Systems Development

The exact number of steps can vary depending on
the aggregation level of each phase. Moreover, steps
are usually sequenced in an iterative manner, which
means the process can iterate to an earlier phase if the
results of the current phase are not satisfactory. Even
though these processes are useful from a high-level
perspective, we argue that they poorly support the
DSS designers and builders to cope with contextual
issues. The next paragraphs provide a couple of ex-
amples to illustrate this argument. The first example
is related to the user interface. The DSS community
widely recognizes that the user interface is a critical
component of a DSS and that it should be designed
and implemented with particular care. But how critical
is this component? On the one hand, if we consider
a DSS that is intended to be used by a wide range of
nontechnical users (for example, a medical DSS for
the triage of incoming patients in an emergency room
that will be used by nurses and MDs working under
pressure), then the user interface is indeed the single
most critical component of the DSS, at least from a
usability/acceptability point of view. In this context,
the human-computer interaction (HCI) literature tells
us that usability must definitely be considered before
prototyping takes place, because the earlier critical
design flaws are detected, the more likely they can be
corrected (Holzinger, 2005). There are techniques (such
as usability context analysis) intended to facilitate such
early focus and commitment (Thomas & Bevan, 1996).
On the other hand, if we consider a highly specific DSS
that will be handled by a few power-users with a high
level of computer literacy (sometimes the DSS builders
themselves), then the user interface is less critical and
usability considerations can be postponed until a later
stage of the development process without threatening
the acceptability of the system. This kind of decision
has an impact on the entire development process but
is rarely considered explicitly in the literature.

The second example deals with the expected lifetime
of the DSS. On the one hand, some DSS are complex
organizational systems connected to a dense network
of transaction information systems. Their knowledge
bases accumulate large quantities of models, rules,
documents, and data over the years, sometimes over a
few decades. They require important financial invest-
ments and are expected to have a long lifetime. For
a computer-based system, a long lifetime inevitably
implies maintenance and legacy issues. The legacy
information systems (LIS) literature offers several

approaches to deal with these issues, such as the big
bang approach (Bateman & Murphy, 1994), the wrap-
ping approach (Comella-Dorda, Wallnau, Seacord, &
Roberts, 2000), the chicken little approach (Brodie
& Stonebraker, 1995), the butterfly approach (Wu et
al., 1997), and the iterative re-engineering approach
(Bianchi, Caivano, Marengo, & Vissagio, 2003).
Some authors also provide methods fostering the clear
separation between the system part and the knowledge
base part, in order to maximize reusability (Gachet &
Haettenschwiler, 2005). On the other hand, some DSS
are smaller systems used to deal with very specific—and
sometimes unique—problems, that do not go past the
prototyping stage, that require minimal finances, and
use a time-limited knowledge base. Maintenance and
legacy issues are less salient for these systems and their
development follows a different process.

We describe in the coming sections of this article a
unifying approach to DSS development allowing DSS
designers to explicitly take these contextual aspects
into considerations in order to guide the development
process of a DSS. This new approach is based on the
concept of value-based software engineering.

VALUe-BASeD SOfTWARe
eNGINeeRING

Suggesting that the DSS community never considered
the context of a DSS prior to its development would
be unfair. Several authors acknowledge that a systems
design process must be specifically related to the
operational environment for which the final system
is intended (Sage, 1991; Wallace et al., 1987). For ex-
ample, Sprague and Carlson (1982) explicitly specified
in their “DSS action plan” a phase consisting of steps
to develop the DSS environment. The purpose of this
phase is to “form the DSS group, articulate its mission,
and define its relationships with other organizational
units. Establish a minimal set of tools and data and
operationalize them.” (p. 68). Nevertheless, how these
tasks should be carried out is not specified. In this sec-
tion, we propose an approach allowing DSS designers
to model contextual value propositions and perform
feedback control of a DSS project. This approach is
inspired by the concept of value-based software engi-
neering (Boehm & Guo Huang, 2003).

Two frequently used techniques in value-based soft-
ware engineering are the benefits realization approach

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/context-decision-support-systems-development/11244

Related Content

Construction of Liver Fibrosis Diagnosis Ontology From Fuzzy Extended ER Modeling: Construction

of FibrOnto From an EER Model
Sara Sweidan, Hazem El-Bakryand Sahar F. Sabbeh (2020). International Journal of Decision Support System

Technology (pp. 46-69).

www.irma-international.org/article/construction-of-liver-fibrosis-diagnosis-ontology-from-fuzzy-extended-er-modeling/240592

An Uncertain Decision Making Process Considering Customers and Services in Evaluating Banks:

A Case Study
Fatemeh Akbari, Hamed Fazlollahtabarand Iraj Mahdavi (2013). International Journal of Strategic Decision

Sciences (pp. 48-78).

www.irma-international.org/article/uncertain-decision-making-process-considering/78346

Novel Real-Time Decision-Based Carrier Tracking for Software-Defined Radios Using M-ARY QAM

Modulation
Nikhil Marriwala, Gnana Kousalya C., B. Rajasekar, N. M. Nandhitha, Ashu Gautamand Aarti Sangwan

(2023). International Journal of Decision Support System Technology (pp. 1-31).

www.irma-international.org/article/novel-real-time-decision-based-carrier-tracking-for-software-defined-radios-using-m-ary-

qam-modulation/317332

Optimal Ordering Strategy of a Replenishment Policy for Deteriorating Items under Retailer’s Partial

Trade Credit Policy
Gour Chandra Mahataand Puspita Mahata (2013). Management Theories and Strategic Practices for Decision

Making (pp. 186-202).

www.irma-international.org/chapter/optimal-ordering-strategy-replenishment-policy/70958

Dynamics in Developing Pricing Strategies
 (2012). Systems Thinking and Process Dynamics for Marketing Systems: Technologies and Applications for

Decision Management (pp. 118-142).

www.irma-international.org/chapter/dynamics-developing-pricing-strategies/65304

http://www.igi-global.com/chapter/context-decision-support-systems-development/11244
http://www.igi-global.com/chapter/context-decision-support-systems-development/11244
http://www.irma-international.org/article/construction-of-liver-fibrosis-diagnosis-ontology-from-fuzzy-extended-er-modeling/240592
http://www.irma-international.org/article/uncertain-decision-making-process-considering/78346
http://www.irma-international.org/article/novel-real-time-decision-based-carrier-tracking-for-software-defined-radios-using-m-ary-qam-modulation/317332
http://www.irma-international.org/article/novel-real-time-decision-based-carrier-tracking-for-software-defined-radios-using-m-ary-qam-modulation/317332
http://www.irma-international.org/chapter/optimal-ordering-strategy-replenishment-policy/70958
http://www.irma-international.org/chapter/dynamics-developing-pricing-strategies/65304

