
Category: Systems and Software Engineering

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

7152

Formal Methods Overview

1. INTRODUCTION

In general, all engineering branches use mathematics 
or mathematical based tools in some if not all of their 
applications. Mathematical based tools have been 
proved exceedingly good in helping to describe, predict, 
design and develop both large and small engineering 
projects. Although this is not a very common practice 
in Software Engineering nowadays, this trend seems to 
be changing by the use of Formal Methods, especially 
by the application of Lightweight Formal Methods and 
Model Checking.

Formal Methods (FM) is an area of Software 
Engineering that encompasses a wide range of meth-
odologies and related tools geared to the production of 
software employing a mathematical basis. There are a 
number of different FM each having its own methodol-
ogy and tools, specially a formal specification language. 
This article gives an overview of the subject describing 
the main aspects of FM, the main differences between 
FM, formal systems and formal languages; it presents 
a classification of FM and formal specifications and 
it discusses different degrees of formality in software 
development. We also discuss the use of Lightweight 
FM, Model Checking and the combined application of 
FM with other traditional methods. Finally, an example 
of a formal specification is presented and pro and 
cons in the use of FM are analyzed in the conclusion 
of the article.

2. BACKGROUND

Formal Methods (FM) cover a wide range of method-
ologies that employ mathematical tools in Software 
Engineering. FM are a collection of methodologies 
and related tools, geared to the production of software 

employing a mathematical basis. There are a number 
of different FM each having its own methodology and 
tools, specially a formal specification language.

Hinchey and Bowen (1995) establish that “Formal 
Methods allow us to propose properties of the system 
and to demonstrate that they hold. They make it pos-
sible for us to examine system behavior and to convince 
ourselves that all possibilities have been anticipated. 
Finally they enable us to prove the conformance of an 
implementation with its specification.”

Most FM are based mainly on the use of formal 
specifications –for which they normally have a language 
to express them– and the possibility of achieving formal 
verification of all or part of the developed software. 
Sometimes they propose also a process to be followed 
using a formal language during software development 
as well as other tools for verification such as an assisted 
prover or a model checker.

The aims of FM can vary according to the different 
methodologies they support, but they all share a com-
mon goal: the production of software with the utmost 
quality. To achieve this, different FM have developed 
not only a theory but also different tools to support 
their respective formal processes. The existence of a 
large and growing number of languages, methods and 
tools that promote the application of formal specifica-
tions shows the growing interest in this area (see http://
formalmethods.wikia.com/wiki/Formal_methods).

3. FORMAL LANGUAGES, 
SYSTEMS, AND METHODS

There is some confusion in the use of terms formal 
language, formal notation, formal system and formal 
method. Alagar and Periyasamy (2011) make clear the 
differences among a formal language, a formal system 

Ana Funes
Universidad Nacional de San Luis, Argentina

Aristides Dasso
Universidad Nacional de San Luis, Argentina

DOI: 10.4018/978-1-4666-5888-2.ch704



Formal Methods OverviewCategory: Systems and Software Engineering

 S

7153

and a formal method (see Table 1). According to them, 
a formal notation or language is a language that has 
both its syntax and semantics formally defined.

The language syntax establishes which the valid 
constructions in the language are. The semantics as-
sociates a meaning to each valid language construction. 
Essentially, the semantics of a language L is given 
by a pair (U, I) where U is the universe of possible 
values (e.g. Integers, Reals, Booleans, etc.) and I is an 
interpretation function I: L → U such that it assigns 
a value in U to each element in L. In other words, the 
language’s syntax and semantics determine what kind 
of expressions we can write in the language and what 
these expressions mean.

When a formal language also has a deductive 
mechanism that allows conducting formal proofs of 
system properties by using a set of axioms and rules of 
inference then we can say that we are in the presence 
of a formal system.

An axiom is a property that is considered valid in 
the formal system while a rule of inference is a syntac-
tic rule o function that given some premises returns a 
conclusion. Examples of rules of inference are Modus 
Ponens and Modus Tollens.

Modus Ponens

If P, then Q. 
P. 
Therefore, Q

Modus Tollens

If P, then Q. 
¬Q 
Therefore, ¬P.

Finally, we can say we are in the presence of a formal 
method if the formal system has automatic support for 
writing specifications and helping in proving properties. 
The method also tell us what steps we need to follow 

in order to write and validate the specifications, go-
ing from the most abstract specifications that capture 
customer requirements to more concrete specifications 
and eventually to an implementation.

4. STYLES AND DEGREES 
IN FORMALITY

An interesting question is why there are so many fla-
vors of FM. There are undoubtedly several possible 
answers to this question. Besides the growing interest 
in FM, we can argue that there are many ways to de-
scribe a system and not everyone agrees on a particular 
style. Why are there so many different programming 
languages? The answer to this question could be also 
the answer to our question. Sometimes the selection 
of a particular specification language has a lot to do 
with its visual appearance. Some people feels com-
fortable using graphical notations, others prefer the 
use of text. Graphics are more intuitive and facilitates 
communication with non-experts while textual nota-
tions are well suited for machine support. Some users 
adopt a mixture of them in order to get the benefits of 
both. In any case, it is important to note that not all 
FM address the same problem. Several characteristics 
of a specification language affect its applicability in 
software development. They determine its scope, focus, 
and the extent of automation and proof support. Some 
of them are geared to system design, others to domain 
description, some deal with time while others do not 
include it, etc. These characteristics are discussed in 
this section.

We can write formal specifications by using a for-
mal language; however, we can adopt different styles 
depending on the characteristics of language employed. 
In Table 2, we show one possible classification of formal 
specification styles. These styles are not unique and 
they can be used in combination.

Some languages support property-oriented (also 
referred as algebraic or axiomatic) specification style 

Table 1. A synoptic view of formal methods, formal systems and formal languages 

Formal Method
Formal System

Formal Notation Formal Language: formal syntax + formal semantics.

Proof system: axioms + inference rules

Automatic tool support for specification, proof assistance, code generation, etc.



 

 

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/formal-methods-overview/112413

Related Content

I-Rough Topological Spaces
Boby P. Mathewand Sunil Jacob John (2016). International Journal of Rough Sets and Data Analysis (pp.

98-113).

www.irma-international.org/article/i-rough-topological-spaces/144708

Improved Cross-Layer Detection and Prevention of Sinkhole Attack in WSN
Ambika N. (2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp. 514-527).

www.irma-international.org/chapter/improved-cross-layer-detection-and-prevention-of-sinkhole-attack-in-wsn/260210

Random Search Based Efficient Chaotic Substitution Box Design for Image Encryption
Musheer Ahmadand Zishan Ahmad (2018). International Journal of Rough Sets and Data Analysis (pp.

131-147).

www.irma-international.org/article/random-search-based-efficient-chaotic-substitution-box-design-for-image-

encryption/197384

Instructional Real World Community Engagement
Caroline M. Crawford (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

1474-1486).

www.irma-international.org/chapter/instructional-real-world-community-engagement/183862

A Unified Platform for the Dynamic Evolution of Context-Aware Highly Agile Services
Xiaodong Liu, Zakwan Jaroucheh, Sally Smithand Huiqun Zhao (2015). Encyclopedia of Information

Science and Technology, Third Edition (pp. 2806-2815).

www.irma-international.org/chapter/a-unified-platform-for-the-dynamic-evolution-of-context-aware-highly-agile-

services/112700

http://www.igi-global.com/chapter/formal-methods-overview/112413
http://www.irma-international.org/article/i-rough-topological-spaces/144708
http://www.irma-international.org/chapter/improved-cross-layer-detection-and-prevention-of-sinkhole-attack-in-wsn/260210
http://www.irma-international.org/article/random-search-based-efficient-chaotic-substitution-box-design-for-image-encryption/197384
http://www.irma-international.org/article/random-search-based-efficient-chaotic-substitution-box-design-for-image-encryption/197384
http://www.irma-international.org/chapter/instructional-real-world-community-engagement/183862
http://www.irma-international.org/chapter/a-unified-platform-for-the-dynamic-evolution-of-context-aware-highly-agile-services/112700
http://www.irma-international.org/chapter/a-unified-platform-for-the-dynamic-evolution-of-context-aware-highly-agile-services/112700

