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Evolvable Hardware

INTRODUCTION

Evolvable Hardware (EHW) is an intelligent technol-
ogy which belongs to a large area called Evolutionary 
Electronics (EEL), which includes applications of 
Evolutionary Computation (EC) in the domain of elec-
tronics. EHW combines concepts from Evolutionary 
Computation (EC) and Electronic Design (ED), and 
it has been an active area of research in the last years. 
This article provides an updated review of this area. 
First, EEL with focus on EHW is overviewed, point-
ing out the applicability of this technology. A brief 
review of two important EC paradigms is provided: 
GAs (Genetic Algorithms) and Genetic Programming 
(GP), since they are the most used in EHW. On the 
other hand, the basic aspects of ED are also shown 
with focus on Reconfigurable Computing (RC) and 
the Field Programmable Gate Arrays (FPGAs) technol-
ogy. Next, the usual taxonomy found in the literature 
is presented: by design type - analog and digital, and 
by evolution type: extrinsic, intrinsic and mixtrinsic. 
Some relevant applications are presented and discussed. 
Finally, future trends are presented.

BACKGROUND

As previously described, this subject merges two areas 
of study. A brief background of both areas is presented 
here to provide the necessary comprehension.

Evolutionary Computation

Problems considered complex and hard (e.g., multimo-
dality, large search space, large number of constraints) 
to be solved using conventional optimization techniques 
of Computer Science are being addressed by EC, which 

employs a collection of algorithms called Evolutionary 
Algorithms (EAs). EAs imitate the nature, specifically 
the Darwinian principle of survival of the fittest. In EC, 
an individual is the representation of a possible solu-
tion. A set of individuals forms the initial population, 
randomly created. The individuals of this population 
eventually produce descendants by means of selection, 
reproduction and mutation, according to the survival 
rule in which the best fitted individuals are those who 
will have more chances to reproduce. The descendants 
form a new population and the process is repeated for 
many generations. When a stopping criterion is met, 
the evolution stops, and the best individual ever found 
is the solution for the problem being handled.

The main EAs are: Evolutionary Programming (EP), 
(Fogel, 1962), (Fogel, Owens & Walsh, 1966), Evolu-
tion Strategies (ES) (Rechenberg, 1965, 1973), Genetic 
Algorithms (GAs) (Holland, 1975) (Goldberg, 1989), 
and Genetic Programming (GP) (Koza, 1992, 1999). 
GAs and GP are the most frequently used in EHW.

Considering P(t) a population of individuals at time 
t, based on the concepts previously presented, GAs 
and GP can be represented by the algorithm shown 
in Figure 1 and described as follows (Bäck, Fogel & 
Michalewicz, 2000a), Goldberg (1989):

Representation

Before running the EA, it is necessary to choose the 
representation, i.e., how the candidate solutions are 
represented in during the execution of an EA. Data 
structures are the commonly representations used by 
computer programs. Depending on the problem, the data 
structure itself can be the real-world solution. But there 
are applications in which such a direct representation is 
not possible, for instance, a list of tasks, a mechanism, 
or an electronic circuit. Binary strings, finite state 
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representations and parse trees are the data structures 
processed by the EAs. The term used for this indirect 
representation in EC is genotype, usually composed 
by one or more chromosomes and the one employed 
for the solution in the real-world is phenotype.

First Generation and Evaluation

For algorithm presented on Figure 1, the initial 
population of individuals is randomly generated. Each 
individual of the population needs to be evaluated to 
inform the EA how good the individual is. This is called 
fitness evaluation and can be processed in two steps: a) 
the genotype to phenotype conversion – in the case of 
an indirect representation; and b) the fitness computa-
tion of the phenotype related to that individual. This 
computation is a procedure using expressions related 
to the problem to produce usually a number, which 
will be used as a measurement of quality. An example 
is an individual such as a sequence of cities to deliver 
a product. This sequence is used in an expression 
looking for higher profits. A sequence that provides a 
good profit receives a better evaluation than another 
individual that provides lower profits. Each individual 
of the population enters the while loop of the algorithm 
after have being evaluated.

Selection

In this phase, the individuals of the population are 
selected for crossover according to their fitness value. 
This selection uses probability. So, the selected indi-
viduals can be the ones with higher fitness values, but 
there can be too some individuals with lower fitness 
values. The most known selection mechanisms are: 
proportional (or roulette wheel), tournament, trunca-
tion, linear rank, and exponential rank.

Crossover

This operation consists of the exchange of genetic 
information between the selected individuals. They 
are called parents. For instance, a crossover between 
two parents “111111” and “000000” can produce two 
possible offspring such as “001100” and “110011.” 
The two bits in their middle portion were changed. This 
operation is probabilistic. Crossover types most known 
are: one point, two point and uniform. A chromosome 
is composed of genetic information (subsets of bits or 
numbers) called building blocks. It is desirable that 
crossover operations allow the exchange of informa-
tion between parents preserving their building blocks, 
promoting the positive evolution, i.e., descendants with 
better values of fitness then their ancestors. Crossover 
is an operator that performs local search in the search 
space of solutions.

Mutation

After crossover, the descendants are probabilistically 
submitted to the mutation operator, which consists in 
changing the value of a single locus (a locus is a posi-
tion where the symbol is in a chromosome) to another 
value. Example: a mutation at locus 0 in the binary 
chromosome “111000111,” results in “111000110.” 
Mutation provides diversity in the search for the so-
lution, since it performs global search, an attempt to 
avoid the AE to be stuck at local maxima.

Genetic Algorithms

GAs (Holland, 1975), (Goldberg, 1989), (Bäck, Fogel, 
& Michalewicz, 2000a), are the most popular EAs and 
all the features described previously are found in it.

Genetic Programming

GP (Koza, 1992, 1999) is an EA that usually evolves 
computer programs. The chromosome is encoded in 
a tree structure. The tree is composed by function 
nodes and terminal nodes. The function nodes are, 
in most cases, arithmetic or mathematical operations 
and Boolean or conditional or iteration functions. 
The function nodes are responsible for connecting the 
terminal nodes, forming the tree, thus generating an 
evolved program in a LISP-like form.

Figure 1. An evolutionary algorithm
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