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INTRODUCTION

Many applications in science and business such as 
signal analysis or costumer segmentation deal with 
large amounts of data which are usually high dimen-
sional in the feature space. As a part of preprocessing 
and exploratory data analysis, visualization of the data 
helps to decide which kind of data mining method 
probably leads to good results or whether outliers or 
noisy data need to be treated before (Barnett & Lewis, 
1994; Hawkins, 1980). Since the visual assessment of 
a feature space that has more than three dimensions is 
not possible, it becomes necessary to find an appropri-
ate visualization scheme for such data sets.

Multidimensional scaling (MDS) is a family of 
methods that seek to present the important structure of 
the data in a reduced number of dimensions. Due to the 
approach of distance preservation that is followed by 
conventional MDS techniques, resource requirements 
regarding memory space and computation time are fairly 
high and prevent their application to large data sets. 
In this work we will present two methods that visual-
ize high-dimensional data on the plane using a new 
approach. An algorithm will be presented that allows 
applying our method on larger data sets. We will also 
present some results on a benchmark data set.

BACKGROUND  

Multidimensional scaling provides low-dimensional 
visualization of high-dimensional feature vectors 
(Kruskal & Wish, 1978; Borg & Groenen, 1997). 
MDS is a method that estimates the coordinates of 
a set of objects in a feature space of specified (low) 

dimensionality that come from data trying to preserve 
the distances between pairs of objects. In the recent 
years much research has been done (Chalmers, 1996; 
Faloutsos & Lin, 1995; Morrison, Ross, & Chalmers, 
2003; Williams & Munzner, 2004; Naud, 2006). Differ-
ent ways of computing distances and various functions 
relating the distances to the actual data are commonly 
used. These distances are usually stored in a distance 
matrix. The estimation of the coordinates will be car-
ried out under the constraint, that the error between 
the distance matrix of the data set and the distance 
matrix of the corresponding transformed data set will 
be minimized. Thus, different error measures to be 
minimized were proposed, i.e. the absolute error, the 
relative error or a combination of both. A commonly 
used error measure is the so-called Sammon’s map-
ping (Sammon, 1969). To determine the transformed 
data set by means of minimizing the error a gradient 
descent method is used. 

Many modifications of MDS are published so far, 
but high computational costs prevent their application 
to large data sets (Tenenbaum, de Silva, & Langford, 
2000). Besides the quadratic need of memory, MDS, 
as described above is solved by an iterative method, 
expensive with respect to computation time, which is 
quadratic in the size of the data set. Furthermore, a 
completely new solution must be calculated, if a new 
object is added to the data set. 

MAIN FOCUS

With MDSpolar and POLARMAP we present two ap-
proaches to find a two-dimensional projection of a 
p-dimensional data set X. Both methods try to find a rep-
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Vresentation in polar coordinates ( ) ( ){ }1 1, , , ,n nY l l=  , 
where the length lk of the original vector xk is preserved 
and only the angle jk has to be optimized. Thus, our 
solution is defined to be optimal if all angles between 
pairs of data objects in the projected data set Y coin-
cide as good as possible with the angles in the original 
feature space X.  As we will show later, it is possible to 
transform new data objects without extra costs.

MDSpolar

A straight forward definition of an objective function 
to be minimized for this problem would be,
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where jk is the angle of yk, ik is the positive angle 
between xi and xk. The absolute value is chosen in 
equation (1) because the order of the minuends can 
have an influence on the sign of the resulting angle. 
The problem with this notation is that the functional 
E is not differentiable, exactly in those points we are 
interested in, namely, where the difference between 
angles ji and jkbecomes zero. 

We propose an efficient method that enables us to 
compute an approximate solution for a minimum of the 
objective function (1) and related ones. In a first step 
we ignore the absolute value in (1) and consider
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When we simply minimize (2), the results will not be 
acceptable. Although the angle between yi and yk might 
perfectly match the angle ik, ji − jk can either be ik 
or ik− . Since we assume that 0 ik≤  holds, we always 
have ( )2

i k ik− − ( )2
i k ik≤ − − . Therefore, find-

ing a minimum of (2) means that this is an upper bound 
for the minimum of (1). Therefore, when we minimize 
(2) in order to actually minimize (1), we can take the 
freedom to choose whether we want the term i k−  
or the term k i−  to appear in (2).  Since
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instead of exchanging the order of ji and jk, we can 
choose the sign of ik, leading to
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with { }1,1ika ∈ − .
In order to solve this optimization problem of equa-

tion (3) we take the partial derivatives of E, yielding
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Thus, on the one hand, neglecting that we still have 
to choose aik, our solution is described by a system 
of linear equations which means its solution can be 
calculated directly without the need of any iteration 
procedure. On the other hand, as described above, we 
have to handle the problem of determining the sign of the 

ik in the form of the aik-values. To fulfill the necessary 
condition for a minimum we set equation (4) equal to 
zero and solve for the jk-values, which leads to
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Since we only want to preserve the angles between 
data vectors, it is obvious that any solution will be in-
variant with respect to rotation of the data set. Due to 
the representation in polar coordinates it is necessary 
to apply a preprocessing step in form of a translation 
that makes all components of data vectors non-nega-
tive. Reasons for that and further details are given in 
(Rehm, Klawonn, & Kruse, 2005).

A Greedy Algorithm for the 
Approximation of MDSpolar

As mentioned above, this solution describes a system 
of linear equations. Since the desired transformation is 
rotation invariant j1 can be set to any value, i.e. j1 = 0. 
By means of a greedy algorithm we choose { }1,1ika ∈ −  
such that for the resulting jk the error E of the objec-
tive function (3) is minimal. For j2 the exact solution 
can always be found, since a12 is the only parameter to 
optimize. For the remaining jk the greedy algorithm 
sets aik in turn either −1 or 1, verifying the validity of 
the result, setting aik the better value immediately and 
continuing with the next aik until all k−1 values for aik 
are set. 
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