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INTRODUCTION

In the field of statistical data mining, the Expecta-
tion Maximization (EM) algorithm is one of the most 
popular methods used for solving parameter estimation 
problems in the maximum likelihood (ML) framework. 
Compared to traditional methods such as steepest 
descent, conjugate gradient, or Newton-Raphson, 
which are often too complicated to use in solving these 
problems, EM has become a popular method because 
it takes advantage of some problem specific properties 
(Xu et al., 1996). The EM algorithm converges to the 
local maximum of the log-likelihood function under 
very general conditions (Demspter et al., 1977; Redner 
et al., 1984). Efficiently maximizing the likelihood by 
augmenting it with latent variables and guarantees of 
convergence are some of the important hallmarks of 
the EM algorithm.

EM based methods have been applied successfully 
to solve a wide range of problems that arise in fields of 
pattern recognition, clustering, information retrieval, 
computer vision, bioinformatics (Reddy et al., 2006; 
Carson et al., 2002; Nigam et al., 2000), etc. Given 
an initial set of parameters, the EM algorithm can 
be implemented to compute parameter estimates that 
locally maximize the likelihood function of the data. 
In spite of its strong theoretical foundations, its wide 
applicability and important usage in solving some 
real-world problems, the standard EM algorithm suf-
fers from certain fundamental drawbacks when used 
in practical settings. Some of the main difficulties of 
using the EM algorithm on a general log-likelihood 
surface are as follows (Reddy et al., 2008):

• EM algorithm for mixture modeling converges to 
a local maximum of the log-likelihood function 
very quickly.

• There are many other promising local optimal 
solutions in the close vicinity of the solutions 
obtained from the methods that provide good 
initial guesses of the solution.

• Model selection criterion usually assumes that 
the global optimal solution of the log-likelihood 
function can be obtained. However, achieving 
this is computationally intractable.

• Some regions in the search space do not contain 
any promising solutions. The promising and non-
promising regions co-exist and it becomes chal-
lenging to avoid wasting computational resources 
to search in non-promising regions.

Of all the concerns mentioned above, the fact that 
most of the local maxima are not distributed uniformly 
makes it important to develop algorithms that not only 
help in avoiding some inefficient search over the low-
likelihood regions but also emphasize the importance 
of exploring promising subspaces more thoroughly 
(Zhang et al, 2004). This subspace search will also be 
useful for making the solution less sensitive to the initial 
set of parameters. In this chapter, we will discuss the 
theoretical aspects of the EM algorithm and demonstrate 
its use in obtaining the optimal estimates of the param-
eters for mixture models. We will also discuss some of 
the practical concerns of using the EM algorithm and 
present a few results on the performance of various 
algorithms that try to address these problems.

BACKGROUND

Because of its greedy nature, the EM algorithm 
converges to a local maximum on the log-likelihood 
surface. Hence, the final solution will be very sensi-
tive to the given initial set of parameters. This local 
maxima problem (popularly known as the initializa-
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tion problem) is one of the well studied issues in the 
context of the EM algorithm. Several algorithms have 
been proposed in the literature to try and solve this 
issue (Reddy, 2007).

Although EM and its variants have been exten-
sively used in the literature, several researchers have 
approached the problem by identifying new techniques 
that give good initialization. More generic techniques 
like deterministic annealing (Ueda et al., 1998), genetic 
algorithms (Pernkopf et al., 2005) have been suc-
cessfully applied to obtain good parameter estimates. 
Though, these techniques have asymptotic guarantees, 
they are very time consuming and hence cannot be used 
in most practical applications. Some problem specific 
algorithms like split and merge EM (Ueda et al., 2000), 
component-wise EM (Figueiredo et al., 2002), greedy 
learning (Verbeek et al., 2003), parameter space grid 
(Li, 1999) have also been proposed in the literature. 
Some of these algorithms are either computationally 
very expensive or infeasible when learning mixture 
models in high dimensional spaces (Li, 1999). In spite 
of the high computational cost associated with these 
methods, very little effort has been taken to explore 
promising subspaces within the larger parameter space. 
Most of the above mentioned algorithms eventually 
apply the EM algorithm to move to a locally maxi-
mal set of parameters on the log-likelihood surface. 
Simpler practical approaches like running EM from 
several random initializations, and then choosing the 
final estimate that leads to the local maximum with the 
highest log-likelihood value to a certain extent have 
also been successful.

For a problem with a non-uniform distribution 
of local maxima, it is difficult for most methods to 
search neighboring subspaces (Zhang et al, 2004). 
Though some of these methods apply other additional 
mechanisms (like perturbations) to escape out of local 
optimal solutions, systematic methods for searching 
the subspace have not been thoroughly studied. More 
recently, TRUST-TECH based Expectation Maximiza-
tion (TRUST-TECH-EM) algorithm has been developed 
by Reddy et al (2008), which applies some properties 
of the dynamical system of the log-likelihood surface 
to identify promising initial starts for the EM algo-
rithm. This dynamical system approach will reveal 
more information about the neighborhood regions and 
helps in moving to different basins of attraction in the 
neighborhood of the current local maximum.

MAIN FOCUS

In this section, we will first discuss the theoretical as-
pects of the EM algorithm and prove some of its basic 
properties. We will then demonstrate the use of the EM 
algorithm in the context of mixture models and give 
some comparative results on multiple datasets.

THEORY OF THE EM ALGORITHM

Formally consider the problem of maximizing the likeli-
hood function L(θ;x) arising from a density f(x;θ), with 
x denoting the data or sample, and θ the parameter of 
interest. As noted above, in both theoretical and applied 
problems maximizing L(θ;x) can often be a difficult 
task. Let us assume that we can identify another random 
variable y such that

f(x; ) f(x,y; )dy    (1)
 
and where the likelihood function arising from f(x,y;θ) 
is relatively easier to maximize. The variable y is often 
called the “hidden”, “latent” or “missing” data and 
together (x,y) is often referred to as the “complete” 
data. 

The EM algorithm maximizes the original likelihood 
function by working with the complete or augmented 
likelihood. The expectation or E-step takes the expected 
value of the complete likelihood over the missing data 
given the original data y and a starting parameter value. 
This process gives rise to an expected (rather condi-
tional expectation) version of the complete likelihood 
which is easier to maximize. The E-step essentially 
has the effect of “substituting” values for the hidden 
variable y. The maximization or M-step optimizes 
the resulting conditional expectation of the complete 
likelihood leading to a new parameter estimate. Based 
on the new parameter estimate, the E-step and the M-
step are repeated back and forth in an iterative manner 
(McLachlan et al., 1997).

We shall prove below that every EM-step gives an 
improvement in the likelihood in the original problem 
but let us first formally state the EM algorithm.
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