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INTRODUCTION

The emergence of remote sensing, scientific simula-
tion and other survey technologies has dramatically 
enhanced our capabilities to collect temporal data.  
However, the explosive growth in data makes the 
management, analysis, and use of data both difficult 
and expensive. Methods that characterize interesting 
or unusual patterns from the volumes of temporal data 
are needed (Roddick & Spiliopoulou, 2002; Han & 
Kamber, 2005). 

The association rule mining methods described in 
this chapter provide the ability to find periodic occur-
rences of inter-sequential factors of interest, from groups 
of long, non-transactional temporal event sequences.  
Association rule mining is well-known to work well for 
problems related to the recognition of frequent patterns 
of data (Han & Kamber, 2005).  Rules are relatively 
easy for humans to interpret and have a long history of 
use in artificial intelligence for representing knowledge 
learned from data. 

BACKGROUND

A time series database contains sequences of values 
typically measured at equal time intervals.  There are 
two main categories of temporal sequences: transac-
tion-based sequences and event sequences.  A transac-
tion-based sequence includes an identifier such as a 
customer ID, and data mining revolves around finding 
patterns within transactions that have matching identi-
fiers. An example pattern is “A customer who bought 
Intel stock is likely to buy Google stock later.” The 
transaction has a definite boundary around known items 
of interest. There are many techniques that address 
these problems (Han & Kamber, 2005).

Data analysis on event sequences is enormously 
more complex than transactional data analysis.  Event 
sequences are often long streams of data where interest-
ing patterns occur either within the sequence or across 
multiple sequences. There are no inherently defined 

boundaries (or identifiers) around factors that might be 
of interest. Temporal event sequence algorithms must 
be able to compute inference from volumes of data, 
find the interesting events involved, and define the 
boundaries around them.  An example pattern is “A La 
Niña weather pattern is likely to precede drought in the 
western United States”.  La Niña weather data is based 
on Pacific Ocean surface temperatures and atmospheric 
values, and drought data is based on precipitation data 
from weather stations throughout the western United 
States.  The sheer number of possible combinations of 
interesting factors and relationships between them can 
easily overwhelm human analytical abilities. Often there 
is a delay between the occurrence of an event and its 
influence on dependent variables.  These factors make 
finding interesting patterns difficult. 

Many different methods have been applied to tempo-
ral event sequences.  In statistics, event sequence data 
is often called a marked point process. However, tra-
ditional methods for analyzing marked point processes 
are ill suited for problems with long, non-transactional 
sequences with numerous event types (Mannila et al. 
1997).  The association rule mining methods described 
in this chapter extract meaningful inter-sequential 
patterns in this type of data. Additionally, the mined 
rules provide much richer information than correla-
tion coefficients from correlating entire sequences. 
The methods described in this chapter are similar to 
inductive logic programming, but with an emphasis on 
time-limited occurrences of sequential data.  Similari-
ties also exist to algorithms used in string matching 
and bioinformatics, but the classes of patterns differ 
(Mannila et al. 1997).  

MAIN FOCUS

Mining association rules is typically decomposed into 
three sub-problems: 1) prepare the data for analysis, 
2) find frequent patterns and 3) generate association 
rules from the sets representing those frequent patterns 
(Agrawal et al., 1993). 



1924  

Temporal Event Sequence Rule Mining

Preparing Event Sequences for Analysis

To prepare sequential data for association rule mining, 
the data is discretized and partitioned into sequences of 
events. Typically, the data is normalized and segmented 
into partitions that have similar characteristics within 
a given interval.  Each partition identifier is called an 
event type.  Different partitioning methods and interval 
sizes produce diverse discretized versions of the same 
dataset. Proper discretization relies on domain-expert 
involvement.  When multivariate sequences are used, 
each is normalized and discretized independently.  

Partitioning methods include symbolizing (Lin et al., 
2003) and intervals (Hoppner, 2002).  The assignment 
of values to a certain state is somewhat arbitrary near 
the decision boundaries. Mörchen & Ultsch (2005) 
presented a method for meaningful unsupervised dis-
cretization that reduces the vulnerability to outliers in the 
data and reduces the problems that occur when intervals 
are cut in high density regions of data values.  

Mielikäinen et al. (2006) proposed a discretization 
technique that segments data by aggregating the results 
of several segmentation algorithms and choosing the 
discretization that agrees as much as possible with the 
underlying structure of the data.  

Finding Frequent Episodes based 
on Sliding Window Technologies

A discretized version of the time series is referred to 
as an event sequence. An event sequence Ŝ is a finite, 
time-ordered sequence of events (Mannila et al., 1995).  
That is, Ŝ = (e1, e2,…en).  An event is an occurrence 
of an event type at a given timestamp. The time that a 
given event ei occurs is denoted i, and i ≤ i+1 for all i 
timestamps in the event sequence.  A sequence includes 
events from a single finite set of event types.  An event 
type can be repeated multiple times in a sequence.  For 
example, the event sequence Ŝ1 = AABCAB is a sequence 
of 6 events, from a set of 3 event types {A,B,C}.  In 
this event sequence, an A event occurs at time 1, fol-
lowed by another A event, followed by a B event, and 
so on. The step size between events is constant for a 
given sequence.

An episode in an event sequence is a combination 
of events with partially specified order (Mannila et al., 
1997).  It occurs in a sequence if there are occurrences 
of events in an order consistent with the given order, 
within a given time bound. Formally, an episode a is 

a pair (V, ordering), where V is a collection of events 
and the ordering is parallel if no order is specified, 
and serial if the events of the episode have fixed order.  
The episode length is defined as the number of events 
in the episode.

Finding frequent episodes in sequences was first 
described by Mannila et al. (1995).  Frequent episodes 
are discovered by using a sliding window approach, 
WINEPI.  A window on an event sequence Ŝ is an 
event subsequence, w=  ei, ei+1,…ei+d where the width 
of window w, denoted d, is the time interval of inter-
est.  The set of all windows w on Ŝ, with a width of 
d is denoted Ŵ(Ŝ,d).  In this system, the value of the 
window width is user-specified, varying the closeness 
of event occurrences.  To process data, the algorithm 
sequentially slides the window of width d one step at 
a time through the data.  The frequency of an episode 
a is defined as the fraction of windows in which the 
episode occurs.  For example, in the sequence Ŝ1 above, 
if a sliding window of width 3 is used, serial episode 
a = AB occurs in the first window (AAB), the second 
window (ABC), and the fourth window (CAB).  The 
guiding principle of the algorithm lies in the “down-
ward-closed'' property of frequency, which means every 
subepisode is at least as frequent as its superepisode. 
Candidate episodes with (k+1) events are generated by 
joining frequent episodes that have k events in com-
mon, and episodes that do not meet a user-specified 
frequency threshold are pruned. 

The closure principle was first applied to the event 
sequences by Harms et al. (2001) to use only a subset 
of frequent episodes, called frequent closed episodes.  
A closed sequential pattern is a sequential pattern which 
has no super-sequence with the same occurrence fre-
quency. A frequent closed episode is the intersection 
of all frequent episodes containing it.  For example, in 
the Ŝ1 sequence, using a window width d = 3, and a 
minimum frequency of three windows, serial episode 
a = AB is a frequent closed episode since no larger 
frequent episode contains it, and it meets the minimum 
frequency threshold. Using closed episodes results in 
a reduced input size and in a faster generation of the 
episodal association rules, especially when events occur 
in clusters.  Casas-Garriga (2005) added post-processing 
of closed sequences to generate classical partial orders, 
without dealing directly with input data. 

Hoppner & Klawonn (2002) divided multivariate 
sequences into small segments and discretized them 
based on their qualitative descriptions (such as increas-
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