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INTRODUCTION 

Graphical models such as Bayesian networks (BNs) 
(Pearl, 1988; Jensen & Nielsen, 2007) and decom-
posable Markov networks (DMNs) (Xiang, Wong., & 
Cercone, 1997) have been widely applied to proba-
bilistic reasoning in intelligent systems.  Knowledge 
representation using such models for a simple problem 
domain is illustrated in Figure 1: Virus can damage 
computer files and so can a power glitch. Power 
glitch also causes a VCR to reset.  Links and lack of 
them convey dependency and independency relations 
among these variables and the strength of each link is 
quantified by a probability distribution. The networks 
are useful for inferring whether the computer has virus 
after checking files and VCR.  This chapter considers 
how to discover them from data.

Discovery of graphical models (Neapolitan, 2004) 
by testing all alternatives is intractable. Hence, heuristic 
search are commonly applied (Cooper & Herskovits, 
1992; Spirtes, Glymour, & Scheines, 1993; Lam & 
Bacchus, 1994; Heckerman, Geiger, & Chickering, 
1995; Friedman, Geiger, & Goldszmidt, 1997; Xiang, 
Wong, & Cercone, 1997).  All heuristics make simpli-
fying assumptions about the unknown data-generating 
models. These assumptions preclude certain models to 
gain efficiency.  Often assumptions and models they 
exclude are not explicitly stated.  Users of such heuristics 
may suffer from such exclusion without even knowing.  
This chapter examines assumptions underlying common 

heuristics and their consequences to graphical model 
discovery.  A decision theoretic strategy for choosing 
heuristics is introduced that can take into account a full 
range of consequences (including efficiency in discov-
ery, efficiency in inference using the discovered model, 
and cost of inference with an incorrectly discovered 
model) and resolve the above issue.

BACKGROUND

A graphical model encodes probabilistic knowledge 
about a problem domain concisely (Pearl, 1988; Jen-
sen & Nielsen, 2007).   Figure 1 illustrates a BN in (a) 
and a DMN in (b).  Each node corresponds to a binary 
variable. The graph encodes dependence assumptions 
among these variables, e.g., that  f is directly dependent 
on v and p, but is independent of r once the value of p 
is observed.  Each node in the BN is assigned a condi-
tional probability distribution (CPD) conditioned on its 
parent nodes, e.g., P(f | v, p) to quantify the uncertain 
dependency.  The joint probability distribution (JPD) 
for the BN is uniquely defined by the product P(v, p, 
f, r) = P(f | v, p) P(r | p) P(v) P(p). The DMN has two 
groups of nodes that are maximally pairwise connected, 
called cliques.  Each is assigned a probability distribu-
tion, e.g., {v, p, f} is assigned P(v, p, f).  The JPD for 
the DMN is P(v, p, f) P(r, p) / P(p).   

When discovering such models from data, it is im-
portant that the dependence and independence relations 

Figure 1. (a) An example BN (b) A corresponding DMN
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expressed by the graph approximate true relations of 
the unknown data-generating model.   How accurately 
can a heuristics do so depends on its underlying as-
sumptions.

To analyze assumptions underlying common 
heuristics, we introduce key concepts for describing 
dependence relations among domain variables in this 
section.  Let V be a set of discrete variables {x1, … , 
xn}.   Each xi has a finite space Sxi = {xi,j | 1≤j≤Di}. When 
there is no confusion, we write xi,j as xij . The space of 
a set VX ⊆  of variables is the Cartesian product SX 
= ∏ ∈Xx i

i
S .  Each element in SX is a configuration 

of X, denoted by x = (x1, … , xn). A probability distri-
bution P(X) specifies the probability P(x) = P(x1, … , 
xn) for each x . P(V) is the JPD and P(X) ( VX ⊂ ) is 
a marginal distribution. A probabilistic domain model 
(PDM) over V defines P(X) for every VX ⊆ .  

For disjoint subsets W, U and Z of V, W and U are 
conditionally independent given Z, if  P(w | u, z) = 
P(w | z) for all configurations such that P(u, z) > 0. 
The condition is also denoted P(W | U, Z) = P(W | Z). 
It allows modeling of dependency within ZUW   
through overlapping subsets ZW   and ZU  .  

W and U are marginally independent if P(W | U) = 
P(W) holds whenever P(U) > 0.  The condition allows 
dependency within UW   to be modeled over disjoint 
subsets. If each variable xi in a subset X is marginally 
independent of X\{ xi }, then variables in X are margin-
ally independent.

Variables in a subset X are generally dependent if 
P(Y | X \ Y) ≠ P(Y) for every XY ⊂ . For instance, X 
= {x1, x2, x3} is not generally dependent if P(x1, x2| x3) 
= P(x1, x2). It is generally dependent if  P(x1, x2| x3) ≠ 
P(x1, x2), P(x2, x3| x1) ≠ P(x2, x3) and P(x3, x1| x2) ≠ P(x3, 
x1). Dependency within X cannot be modeled over 
disjoint subsets but may through overlapping subsets, 
due to conditional independence in X.  

Variables in X are collectively dependent if, for each 
proper subset XY ⊂ , there exists no proper subset 

YXZ \⊂  that satisfies P(Y | X \ Y) = P(Y | Z). Collec-
tive dependence prevents modeling through overlapping 
subsets and is illustrated in the next section.

                             

MAIN THRUST OF THE CHAPTER

Pseudo-Independent (PI) Models

A pseudo-independent (PI) model is a PDM where 
proper subsets of a set of collectively dependent vari-
ables display marginal independence (Xiang, Wong., 
& Cercone, 1997).  Common heuristics often fail in 
learning a PI model (Xiang, Wong., & Cercone, 1996).  
Before analyzing how assumptions underlying common 
heuristics cause such failure, we introduce PI models 
below.  PI models can be classified into three types: 
full, partial, and embedded.  The basic PI model is a 
full PI model.

Definition 1. A PDM over a set V (|V| ≥ 3) of variables 
is a full PI model if the following hold:

(SI) Variables in each proper subset of V are marginally 
independent.

(SII) Variables in V are collectively dependent.

Example 1 Patient of a chronicle disease changes the 
health state (denoted by variable s) daily between stable 
(s = t) and unstable (s = u).  Patient suffers badly in an 
unstable day unless treated in the morning, at which 
time no indicator of the state is detectable.  However, 
if treated at the onset of a stable day, the day is spoiled 
due to side effect.  From historical data, patient’s states 
in four consecutive days observe the estimated distri-
bution in Table 1.

The state in each day is uniformly distributed, i.e., 
P(si = t) = 0.5 where 1≤ i≤ 4.  The state of each day 
is marginally independent of that of the previous day, 
i.e., P(si = t| si-1) = 0.5 where 2≤ i≤ 4.  It is marginally 
independent of that of the previous two days, i.e., P(si 
= t| si-1 , si-2) = 0.5 where 3≤ i≤ 4.  However, states of 
four days are collectively dependent, e.g., P(s4 = u| 
s3=u, s2=t, s1=t) = 1, which allows the state of the last 
day to be predicted from states of previous three days.  
Hence, the patient’s states form a full PI model.

By relaxing condition (SI), full PI models are 
generalized into partial PI models defined through 
marginally independent partition (Xiang, Hu, Cercone, 
& Hamilton, 2000):
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