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INTRODUCTION

Clustering can be considered as the most important 
unsupervised learning problem. It has been discussed 
thoroughly by both statistics and database communi-
ties due to its numerous applications in problems such 
as classification, machine learning, and data mining. 
A summary of clustering techniques can be found in 
(Berkhin, 2002). 

Most known clustering algorithms such as DBSCAN 
(Easter, Kriegel, Sander, & Xu, 1996) and CURE (Guha, 
Rastogi, & Shim, 1998) cluster data points based on 
full dimensions. When the dimensional space grows 
higher, the above algorithms lose their efficiency and 
accuracy because of the so-called “curse of dimen-
sionality”. It is shown in (Beyer, Goldstein, Ramak-
rishnan, & Shaft, 1999) that computing the distance 
based on full dimensions is not meaningful in high 
dimensional space since the distance of a point to its 
nearest neighbor approaches the distance to its farthest 
neighbor as dimensionality increases. Actually, natural 
clusters might exist in subspaces. Data points in differ-
ent clusters may be correlated with respect to different 
subsets of dimensions. In order to solve this problem, 
feature selection (Kohavi & Sommerfield, 1995) and 
dimension reduction (Raymer, Punch, Goodman, Kuhn, 
& Jain, 2000) have been proposed to find the closely 
correlated dimensions for all the data and the clusters 
in such dimensions. Although both methods reduce the 
dimensionality of the space before clustering, the case 
where clusters may exist in different subspaces of full 
dimensions is not handled well.

Projected clustering has been proposed recently to 
effectively deal with high dimensionalities. Finding 
clusters and their relevant dimensions are the objectives 

of projected clustering algorithms. Instead of project-
ing the entire dataset on the same subspace, projected 
clustering focuses on finding specific projection for 
each cluster such that the similarity is reserved as 
much as possible.

BACKGROUND

Projected clustering algorithms generally fall into 
two categories: density-based algorithms (Agrawal, 
Gehrke, Gunopulos, & Raghavan, 1998; Procopiuc, 
Jones, Agarwal, & Murali, 2002; Liu & Mamoulis, 
2005; Ng, Fu, & Wong, 2005; Moise, Sander, & Es-
ter, 2006) and distance-based algorithms (Aggarwal, 
Procopiuc, Wolf, Yu, & Park, 1999; Aggarwal & Yu, 
2000; Deng, Wu, Huang, & Zhang, 2006; Yip, Cheung, 
& Ng, 2003; Tang, Xiong, Zhong, & Wu, 2007). Den-
sity-based algorithms define a cluster as a region that 
has a higher density of data points than its surrounding 
regions. Dense regions only in their corresponding 
subspaces need to be considered in terms of projected 
clustering. Distance-based algorithms define a cluster 
as a partition such that the distance between objects 
within the same cluster is minimized and the distance 
between objects from different clusters is maximized. 
A distance measure is defined between data points. 
Compared to density-based methods in which each data 
point is assigned to all clusters with a different prob-
ability, distance-based methods assign data to a cluster 
with probability 0 or 1. Three criteria (Yip, Cheung, 
& Ng, 2003) have been proposed to evaluate clusters: 
the number of data points in a cluster, the number of 
selected dimensions in a cluster, and the distance be-
tween points at selected dimensions. 
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PROCLUS (Aggarwal, Procopiuc, Wolf, Yu, & 
Park, 1999) is a typical distance-based projected 
clustering algorithm which returns a partition of 
the data points, together with sets of dimensions on 
which data points in each cluster are correlated by 
using Manhattan segmental distance. However, this 
algorithm loses its effectiveness when points in dif-
ferent dimensions have different variance. We propose 
our algorithm, IPROCLUS (Improved PROCLUS) 
based on the following enhancements. We propose 
the modified Manhattan segmental distance which is 
more accurate and meaningful in projected clustering 
in that the closeness of points in different dimensions 
not only depends on the distance between them, but 
also relates to the distributions of points along those 
dimensions. Since PROCLUS strongly depends on 
two user parameters, we propose a dimension tuning 
process to reduce the dependence on one of the user 
parameters. We also propose a simplified replacing 
logic compared to PROCLUS.

MAIN FOCUS

Our algorithm, IPROCLUS, which allows the selec-
tion of different subsets of dimensions for different 
clusters, is based on PROCLUS. Our algorithm takes 
the number of clusters k and the average number of 
dimensions l in a cluster as inputs. It has three phases: 
an initialization phase, an iterative phase, and a cluster 
refinement phase. The medoid for a cluster is the near-
est data point to the center of the cluster. The detail of 
our algorithm can be found in (Deng, Wu, Huang, & 
Zhang, 2006).

Modified Manhattan Segmental Distance

Manhattan segmental distance is defined as (∑i∈D| 
p1,i-p2, i|)/ |D| in PROCLUS. In our algorithm, we 
propose the modified Manhattan segmental distance 
as the distance measure to improve accuracy. We find 
that the closeness of points in different dimensions not 
only depends on the distance between them, but also 
depends on the distributions of points along different 
dimensions. Therefore we define a normalization factor 
ni for each dimension, which is the standard deviation 
of all points in a dataset along dimension i. The modi-
fied Manhattan segmental distance between x1 and x2 

relative to dimension set D can be defined as: (∑i∈D 
|p1, i–p2, i| / ni)/ |D|. 

Initialization Phase

In the initialization phase, all data points are first chosen 
by random to form a random data sample set S with 
size A×k, where A is a constant. Then S is chosen by 
a greedy algorithm to obtain an even smaller set of 
points M with size B×k, where B is a small constant. 
The greedy algorithm (Gonzalez, 1985) is based on 
avoiding choosing the medoids from the same cluster. 
Therefore, the set of points which are most far apart 
are chosen.

Iterative Phase

We begin by choosing a random set of k points from 
M. Then the bad medoids (Aggarwal, Procopiuc, Wolf, 
Yu, & Park, 1999) in the current best medoids set are 
iteratively replaced with random points from M until 
the current best medoids set does not change after a 
certain number of replacements have been tried. 

In each iteration, we first find dimensions for each 
medoid in the set, and form the cluster corresponding 
to each medoid. Then the clustering is evaluated and 
the bad medoids in the current best medoids set are 
replaced if the new clustering is better. 

In order to find dimensions, several terms need to 
be defined first. For each medoid mi, δi is the minimum 
distance from any other medoids to mi based on full 
dimensions. The locality Li is the set of points within 
the distance of δi from mi. Xi, j is the average distance to 
mi along dimension j, which is calculated by dividing 
the average distance from the points in Li to mi along 
dimension j by the normalization factor nj. There are 
two constraints when associating dimensions to me-
doids. The total number of dimensions associated to 
medoids must be equal to k×l. The number of dimensions 
associated with each medoid must be at least 2. For 
each medoid i, we compute the mean ( ),1

/d
i i jj

Y X d
=

= ∑ , 

and the standard deviation ( ) ( )2

, / 1i i j ij
X Y d= − −∑  

of the values Xi, j. Yi represents the average modified 
Manhattan segmental distance of the points in Li 
relative to the entire space. Thus ( ), , /i j i j i iZ X Y= −  
indicates how the average distance along dimension j 
associated with the medoid mi is related to the average 
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