
1610 Section: Program Mining

Program Mining Augmented with Empirical
Properties
Minh Ngoc Ngo
Nanyang Technological University, Singapore

Hee Beng Kuan Tan
Nanyang Technological University, Singapore

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Due to the need to reengineer and migrating aging
software and legacy systems, reverse engineering has
started to receive some attention. It has now been estab-
lished as an area in software engineering to understand
the software structure, to recover or extract design and
features from programs mainly from source code. The
inference of design and feature from codes has close
similarity with data mining that extracts and infers in-
formation from data. In view of their similarity, reverse
engineering from program codes can be called as program
mining. Traditionally, the latter has been mainly based
on invariant properties and heuristics rules. Recently,
empirical properties have been introduced to augment
the existing methods. This article summarizes some of
the work in this area.

BACKGROUND

“Software must evolve over time or it becomes useless”
(Lehman). A large part of software engineering effort
today is involved not in producing code from scratch but
rather in maintaining and building upon existing code.
For business, much of their applications and data reside
in large, legacy systems. Unfortunately, these systems
are poorly documented. Typically, they become more
complex and difficult to understand over time.

 Due to this need to reengineer and migrating aging
software and legacy systems, reverse engineering has
started to receive some attentions. Reverse engineering
is an approach to understand the software structure, to
recover or extract design and features, given the source
code. This process identifies software building blocks,
extract structural dependencies, produces higher-level
abstractions and present pertinent summaries. Reverse

engineering helps by providing computer assistance,
often using compiler technologies such as lexical, syn-
tactic and semantic analysis. Static analysis strengthens
the study by inferring relationships that may not be
obvious from the syntax of the code, without running
the program.

 The inference of design patterns and features
from codes has close similarity with data mining that
extracts and infers information from data. In view of
their similarity, reverse engineering from program codes
can be called as program mining. Program mining is a
challenging task because there are intrinsic difficulties in
performing the mapping between the language of high
level design requirements and the details of love level
implementation. Although program mining depends
heavily on human effort, a number of approaches have
been proposed to automate or partially automate this
process.

 Traditionally, approaches to program mining are
based on invariant properties of programs or heuristic
rules to recover design information from source code
(De Lucia, Deufemia, Gravino, & Risi, 2007; Poshy-
vanyk, Gueheneuc, Marcus, Antoniol, & Rajlich,
2007; Robillard & Murphy, 2007; Shepherd, Fry,
Hill, Pollock, & Vijay-Shanker, 2007; Shi & Olsson,
2006). Recently, several researchers have developed
experimental program analysis approaches (Ruthruff,
Elbaum, & Rothermel, 2006; Tonella, Torchiano, Du
Bois, & Systa, 2007) as a new paradigm for solving
software engineering problems where traditional ap-
proaches have not succeeded. The use of empirical
properties, which have been validated statistically, to
solve problems is very common in the area of medi-
cine (Basili, 1996). However, the application of this
method is rather unexplored in software engineering.
This paper summarizes some of our work in this area
which incorporates the use of empirical properties.

 1611

Program Mining Augmented with Empirical Properties

P
MAIN FOCUS

In this section, we first describe our work on empiri-
cal-based recovery and maintenance of input error cor-
rection features in information system (Ngo & Tan,
2006).We then discuss the use of empirical properties
to infer the infeasibility of a program path (Ngo &
Tan, 2007). This work on infeasible path detection is
useful for all software engineering tasks which rely on
static analysis especially testing and coverage analy-
sis. Finally, we present an approach to extract all the
possible database interactions from source code (Ngo,
Tan, & Trinh, 2006).

Empirical Recovery and Maintenance of
Input Error Correction Features

Information systems constitute one of the largest and
most important software domains in the world. In many
information systems, a major and important component
is processing inputs submitted from its external environ-
ment to update its database. However, many input errors
are only detected after the completion of execution. We
refer to this type of input errors as after-effect input
errors. As after-effect input error is unavoidable, the
provision of after-effect input error correction features
is extremely important in any information system. Any
omission of the provision of these features will lead
to serious adverse impact. We observe that input error
correction features exhibits some common properties.
Through realizing these properties from source code,
input error correction features provided by a system to
correct these effects can be recovered. All the empirical
properties have been validated statistically with samples
collected from a wide range of information systems.
The validation gives evidence that all the empirical
properties hold for more than 99 percent of all the cases
at 0.5 level of significance.

Properties of Input Error Correction
Features

Input errors can be approximately classified into: error
of commission (EC), error of omission (EO) and value
error (VE). In a program, there are statements which
when being executed will raise some external effects;
these statements are called effect statements. If effect
statements are influenced by some input errors, they
will result in erroneous effects; we refer to these as ef-

fect errors. Effect errors can be classified into EO, EC
and VE in the combination of attributes for executing
the effect statement.

In an information system, a type of effect error (EO,
EC or VE) that may occur in executing an effect statement
e can be corrected by executing another effect statement
f in the system. We call f an error correction statement
(Tan & Thein, 2004) for correcting e. The minimum
collection of all the paths for correcting an input error
ξ is called the basis collection of error correction paths
for correcting ξ. We discover some empirical patterns
for realizing the basis collection of error correction paths
for correcting an input error as follow:

Empirical Property 1. A set of paths {q1,…, qk} is a
basis collection of error correction paths for correct-
ing the input ξ is and only if we can partition the set
of effect errors resulting from ξ into several partitions
{E1,…., Ek} such that for each j, 1 ≤ j ≤ k, by executing
qj, all the effect errors in Ej are corrected.

For many programs, the correctability of all its input
errors can be deduced from existence of basis collection
of error correction paths for some of these errors. This
is presented in the following empirical property:

Empirical Property 2. If for each path through the
control flow graph of a program, there is a basis collec-
tion of error correction paths for correcting EC in the
input accessed in the path, then any after-effect input
error of the program is correctable.

If each path through the control flow graph of a
program S is in a basis collection of error correction
paths for correcting an input error of program T, then
S is called an error correction program for T. The fol-
lowing empirical property suggests a mechanism to
verify the correctability of a program V.

Empirical Property 3. It is highly probable that any
input error of program V is correctable if and only if
one of the following conditions holds:

• Based on basis collections of error correction
paths, Empirical Property 2 infers that any after-
effect error of V is correctable.

• Program V is an error correction program for
program T and any after-effect error of T is cor-
rectable.

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/program-mining-augmented-empirical-properties/11034

Related Content

A Novel Approach on Negative Association Rules
Ioannis N. Kouris (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1425-1430).

www.irma-international.org/chapter/novel-approach-negative-association-rules/11008

Digital Wisdom in Education: The Missing Link
Girija Ramdas, Irfan Naufal Umar, Nurullizam Jamiatand Nurul Azni Mhd Alkasirah (2024). Embracing Cutting-

Edge Technology in Modern Educational Settings (pp. 1-18).

www.irma-international.org/chapter/digital-wisdom-in-education/336188

Clustering Data in Peer-to-Peer Systems
Mei Liand Wang-Chien Lee (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 251-

257).

www.irma-international.org/chapter/clustering-data-peer-peer-systems/10829

Biological Image Analysis via Matrix Approximation
Jieping Ye, Ravi Janardanand Sudhir Kumar (2009). Encyclopedia of Data Warehousing and Mining, Second

Edition (pp. 166-170).

www.irma-international.org/chapter/biological-image-analysis-via-matrix/10815

Data Reduction with Rough Sets
Richard Jensen (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 556-560).

www.irma-international.org/chapter/data-reduction-rough-sets/10875

http://www.igi-global.com/chapter/program-mining-augmented-empirical-properties/11034
http://www.igi-global.com/chapter/program-mining-augmented-empirical-properties/11034
http://www.irma-international.org/chapter/novel-approach-negative-association-rules/11008
http://www.irma-international.org/chapter/digital-wisdom-in-education/336188
http://www.irma-international.org/chapter/clustering-data-peer-peer-systems/10829
http://www.irma-international.org/chapter/biological-image-analysis-via-matrix/10815
http://www.irma-international.org/chapter/data-reduction-rough-sets/10875

