Section: Program Comprehension

Program Comprehension through Data Mining _

Ioannis N. Kouris

1603

University of Patras, Dept. of Computer Engineering and Informatics Greece

INTRODUCTION

Software development has various stages, that can be
conceptually grouped into two phases namely develop-
mentand production (Figure 1). The development phase
includes requirements engineering, architecting, design,
implementation and testing. The production phase on
the other hand includes the actual deployment of the end
product and its maintenance. Software maintenance is
the lastand most difficult stage in the software lifecycle
(Sommerville, 2001), as well as the most costly one.
According to Zelkowitz, Shaw and Gannon (1979)
the production phase accounts for 67% of the costs
of the whole process, whereas according to Van Vliet
(2000) the actual cost of software maintenance has
been estimated at more than half of the total software
development cost.

The development phase is critical in order to facili-
tate efficient and simple software maintenance. The
earlier stages should be done by taking into consider-
ation apart from any functional requirements also the
later maintenance task. For example the design stage
should plan the structure in a way that can be easily al-
tered. Similarly, the implementation stage should create
code that can be easily read, understood, and changed,
and should also keep the code length to a minimum.
According to Van Vliet (2000) the final source code
length generated is the determinant factor for the total
cost during maintenance, since obviously the less code
is written the easier the maintenance becomes.

According to Erdil et al. (2003) there are four major
problems that can slow down the whole maintenance
process: unstructured code, maintenance program-
mers having insufficient knowledge of the system,
documentation being absent, out of date, or at best
insufficient, and software maintenance having a bad
image. Thus the success of the maintenance phase
relies on these problems being fixed earlier in the life
cycle. In real life however when programmers decide
to perform some maintenance task on a program such
as to fix bugs, to make modifications, to create software
updates etc. these are usually done in a state of time

and commercial pressures and with the logic of cost
reduction, thus finally resulting in a problematic sys-
tem with ever increased complexity. As a consequence
the maintainers spend from 50% up to almost 90% of
their time trying to comprehend the program (Erdos
and Sneed; 1998, Von Mayrhauser and Vans; 1994,
Pigoski, 1996). Providing maintainers with tools and
techniques to comprehend the programs has become
and is receiving a lot of financial and research interest
given the widespread of computers and software in all
aspects of life. In this work we briefly present some
of the most important techniques proposed in the field
thus far and focus primarily on the use of data mining
techniques in general and especially on association
rules. Accordingly we give some possible solutions
to problems faced by these methods.

BACKGROUND

Data mining can be defined as the process concerned
with applying computational techniques (i.e. algorithms
implemented as computer programs) to find patterns
in the data. Among others, data mining technologies
include association rule discovery, classification,
clustering, summarization, regression and sequential
pattern discovery (Chen, Han & Yu, 1996).

The use of data mining techniques in program com-
prehension has been very wide, with clustering being
the most popular method. Tjortjis and Layzel (2001)
have proposed a tool called DMCC (Data Mining Code
Clustering) in order to help maintainers who are not
familiar with some software to get a quick overview
and speed up the process of getting familiar with it. The
specific tool used clustering techniques for grouping
together entities that share common characteristics.
Mancoridis et al. (1998) have proposed a tool called
Bunch that creates a high level decomposition of the
structure of a system into meaningful subsystems by
using clustering techniques over aModule Dependency
Graph. Subsystems provide developers with high-level
structural information that helps them navigate through

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



Program Comprehension through Data Mining

Figure 1. Software development stages and their relative costs (Zelkowitz, Shaw and Gannon, 1979)

Requiremants

Analysis (3%)
Specification
(3%)
Development
Phase
Coding (7%)
Testing (7%)
Operations and Maintenance Production
(67%) Phase

the numerous software components, their interfaces,
and their interconnections. Kanellopoulos and Tjortjis
(2004) have also used clustering techniques on source
code in order to facilitate program comprehension.
Their work extracted data from C++ source code, and
tried to cluster it in blocks in order to identify logical,
behavioral and structural correlations amongst program
components.

Other similar works can be found at Anquetil and
Lethbridge (1999), Lakhotia (1997) and Tzerpos and
Holt (1998). Also an early but thorough overview on
software clustering techniques can be found by Wig-
gerts (1997).

In a significantly smaller degree there has been
used also association rules on program comprehension.

1604

Tjortjis, Sinos and Layzell (2003) have proposed a
technique that inputs data extracted from source code
and derives association rules. These rules help the for-
mation of groups of source code containing interrelated
entities. Similar work to Mancoridis et al. (1998) but
with the use of association rules instead of cluster-
ing techniques has been made by De Oca and Carver
(1998). In this work by using the ISA (Identification
of Subsystems based on Associations) methodology a
software system was decomposed into data cohesive
subsystems by mining association rules. Use of associa-
tion rules into program comprehension has been made
also by Sartipi, Kontogiannis and Mavaddat (2000) for
architectural design recovery.



5 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage: www.igi-
global.com/chapter/program-comprehension-through-data-mining/11033

Related Content

On Interactive Data Mining
Yan Zhao (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1085-1090).
www.irma-international.org/chapter/interactive-data-mining/10956

Symbiotic Data Miner
Kuriakose Athappilly (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1903-1908).
www.irma-international.org/chapter/symbiotic-data-miner/11079

Semi-Structured Document Classification
Ludovic Denoyer (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1779-1786).
www.irma-international.org/chapter/semi-structured-document-classification/11059

Data Mining for the Chemical Process Industry

Ng Yew Sengand Rajagopalan Srinivasan (2009). Encyclopedia of Data Warehousing and Mining, Second
Edition (pp. 458-464).

www.irma-international.org/chapter/data-mining-chemical-process-industry/10860

Incremental Mining from News Streams
Seokkyung Chung (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1013-1018).
www.irma-international.org/chapter/incremental-mining-news-streams/10945



http://www.igi-global.com/chapter/program-comprehension-through-data-mining/11033
http://www.igi-global.com/chapter/program-comprehension-through-data-mining/11033
http://www.irma-international.org/chapter/interactive-data-mining/10956
http://www.irma-international.org/chapter/symbiotic-data-miner/11079
http://www.irma-international.org/chapter/semi-structured-document-classification/11059
http://www.irma-international.org/chapter/data-mining-chemical-process-industry/10860
http://www.irma-international.org/chapter/incremental-mining-news-streams/10945

