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INTRODUCTION

A number of important problems in data mining can be 
usefully addressed within the framework of statistical 
hypothesis testing. However, while the conventional 
treatment of statistical significance deals with error 
probabilities at the level of a single variable, practical 
data mining tasks tend to involve thousands, if not mil-
lions, of variables. This Chapter looks at some of the 
issues that arise in the application of hypothesis tests 
to multi-variable data mining problems, and describes 
two computationally efficient procedures by which 
these issues can be addressed.

BACKGROUND

Many problems in commercial and scientific data 
mining involve selecting objects of interest from large 
datasets on the basis of numerical relevance scores 
(“object selection”). This Section looks briefly at the 
role played by hypothesis tests in problems of this 
kind. We start by examining the relationship between 
relevance scores, statistical errors and the testing of 
hypotheses in the context of two illustrative data mining 
tasks. Readers familiar with conventional hypothesis 
testing may wish to progress directly to the main part 
of the Chapter.

 As a topical example, consider the differential 
analysis of gene microarray data (Piatetsky-Shapiro 
& Tamayo, 2004; Cui & Churchill, 2003). The data 
consist of expression levels (roughly speaking, levels 
of activity) for each of thousands of genes across two 
or more conditions (such as healthy and diseased). The 
data mining task is to find a set of genes which are 
differentially expressed between the conditions, and 
therefore likely to be relevant to the disease or biological 
process under investigation. A suitably defined math-
ematical function (the t-statistic is a canonical choice) 
is used to assign a “relevance score” to each gene and 
a subset of genes selected on the basis of the scores. 
Here, the objects being selected are genes.

As a second example, consider the mining of sales 
records. The aim might be, for instance, to focus 
marketing efforts on a subset of customers, based on 
some property of their buying behavior. A suitably 
defined function would be used to score each customer 
by relevance, on the basis of his or her records. A set 
of customers with high relevance scores would then 
be selected as targets for marketing activity. In this 
example, the objects are customers. 

Clearly, both tasks are similar; each can be thought 
of as comprising the assignment of a suitably defined 
relevance score to each object and the subsequent 
selection of a set of objects on the basis of the scores. 
The selection of objects thus requires the imposition of 
a threshold or cut-off on the relevance score, such that 
objects scoring higher than the threshold are returned 
as relevant. Consider the microarray example described 
above. Suppose the function used to rank genes is simply 
the difference between mean expression levels in the 
two classes. Then the question of setting a threshold 
amounts to asking how large a difference is sufficient 
to consider a gene relevant. Suppose we decide that a 
difference in means exceeding x is ‘large enough’: we 
would then consider each gene in turn, and select it as 
“relevant” if its relevance score equals or exceeds x. 
Now, an important point is that the data are random 
variables, so that if measurements were collected again 
from the same biological system, the actual values 
obtained for each gene might differ from those in the 
particular dataset being analyzed. As a consequence 
of this variability, there will be a real possibility of 
obtaining scores in excess of x from genes which are 
in fact not relevant. 

In general terms, high scores which are simply due 
to chance (rather than the underlying relevance of the 
object) lead to the selection of irrelevant objects; errors 
of this kind are called false positives (or Type I errors). 
Conversely, a truly relevant object may have an unusu-
ally low score, leading to its omission from the final set 
of results. Errors of this kind are called false negatives 
(or Type II errors). Both types of error are associated 
with identifiable costs: false positives lead to wasted 



  1391

Multiple Hypothesis Testing for Data Mining

M
resources, and false negatives to missed opportunities. 
For example, in the market research context, false posi-
tives may lead to marketing material being targeted at 
the wrong customers; false negatives may lead to the 
omission of the “right” customers from the marketing 
campaign. Clearly, the rates of each kind of error are 
related to the threshold imposed on the relevance score: 
an excessively strict threshold will minimize false 
positives but produce many false negatives, while an 
overly lenient threshold will have the opposite effect. 
Setting an appropriate threshold is therefore vital to 
controlling errors and associated costs.

 Statistical hypothesis testing can be thought of as 
a framework within which the setting of thresholds 
can be addressed in a principled manner. The basic 
idea is to specify an acceptable false positive rate (i.e. 
an acceptable probability of Type I error) and then use 
probability theory to determine the precise threshold 
which corresponds to that specified error rate. A gen-
eral discussion of hypothesis tests at an introductory 
level can be found in textbooks of statistics such as 
DeGroot and Schervish (2002), or Moore and McCabe 
(2002); the standard advanced reference on the topic 
is Lehmann (1997). 

Now, let us assume for the moment that we have 
only one object to consider. The hypothesis that the 
object is irrelevant is called the null hypothesis (and 
denoted by H0), and the hypothesis that it is relevant 
is called the alternative hypothesis (H1). The aim of 
the hypothesis test is to make a decision regarding the 
relevance of the object, that is, a decision as to which 
hypothesis should be accepted. Suppose the relevance 
score for the object under consideration is t. A decision 
regarding the relevance of the object is then made as 
follows:

1. Specify an acceptable level of Type I error p*.
2. Use the sampling distribution of the relevance 

score under the null hypothesis to compute a 
threshold score corresponding to p*. Let this 
threshold score be denoted by c.

3. If t ≥	c, reject the null hypothesis and regard the 
object as relevant. If t < c, regard the object as 
irrelevant.

The specified error level p* is called the significance 
level of the test and the corresponding threshold c the 
critical value. 

Hypothesis testing can alternatively be thought of as 
a procedure by which relevance scores are converted into 
corresponding error probabilities. The null sampling 
distribution can be used to compute the probability p of 
making a Type I error if the threshold is set at exactly 
t, i.e. just low enough to select the given object. This 
then allows us to assert that the probability of obtaining 
a false positive if the given object is to be selected is at 
least p. This latter probability of Type I error is called a 
P-value. In contrast to relevance scores, P-values, being 
probabilities, have a clear interpretation. For instance, 
if we found that an object had a t-statistic value of 3 
(say), it would be hard to tell whether the object should 
be regarded as relevant or not. However, if we found 
the corresponding P-value was 0.001, we would know 
that if the threshold were set just low enough to include 
the object, the false positive rate would be 1 in 1000, 
a fact that is far easier to interpret. 

MAIN THRUST 

We have seen that in the case of a single variable, 
relevance scores obtained from test statistics can be 
easily converted into error probabilities called P-values. 
However, practical data mining tasks, such as mining 
microarrays or consumer records, tend to be on a very 
large scale, with thousands, even millions of objects 
under consideration. Under these conditions of multi-
plicity, the conventional P-value described above no 
longer corresponds to the probability of obtaining a 
false positive.

An example will clarify this point. Consider once 
again the microarray analysis scenario, and assume that 
a suitable relevance scoring function has been chosen. 
Now, suppose we wish to set a threshold correspond-
ing to a false positive rate of 0.05. Let the relevance 
score whose P-value is 0.05 be denoted by t05. Then, 
in the case of a single variable/gene, if we were to set 
the threshold at t05, the probability of obtaining a false 
positive would be 0.05. However, in the multi-gene 
setting, it is each of the thousands of genes under 
study that is effectively subjected to a hypothesis test 
with the specified error probability of 0.05. Thus, the 
chance of obtaining a false positive is no longer 0.05, 
but much higher. For instance, if each of 10000 genes 
were statistically independent, (0.05 × 10000) = 500 
genes would be mistakenly selected on average! In 
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