
1303

M

INTRODUCTION

Software is a ubiquitous component in our daily life. 
It ranges from large software systems like operating 
systems to small embedded systems like vending 
machines, both of which we frequently interact with. 
Reducing software related costs and ensuring cor-
rectness and dependability of software are certainly 
worthwhile goals to pursue.

Due to the short-time-to-market requirement im-
posed on many software projects, documented soft-
ware specifications are often lacking, incomplete and 
outdated (Deelstra, Sinnema & Bosch 2004). Lack of 
documented software specifications contributes to dif-
ficulties in understanding existing systems. The latter 
is termed program comprehension and is estimated to 
contribute up to 45% of total software cost which goes to 
billions of dollars (Erlikh 2000, Standish 1984; Canfora 
& Cimitile 2002; BEA 2007). Lack of specifications 
also hampers automated effort of program verification 
and testing (Ammons, Bodik & Larus 2002). 

One solution to address the above problems is min-
ing (or automatic extraction of) software specification 
from program execution traces. Given a set of program 
traces, candidate partial specifications pertaining to the 
behavior a piece of software obeys can be mined. 

In this chapter, we will describe recent studies on 
mining software specifications. Software specification 
mining has been one of the new directions in data mining 
(Lo, Khoo & Liu 2007a, Lo & Khoo 2007). Existing 
specification mining techniques can be categorized 
based on the form of specifications they mine. We will 
categorize and describe specification mining algorithms 
for mining five different target formalisms: Boolean 
expressions, automata (Hopcroft, Motwani & Ullman 
2001), Linear Temporal Logic (Huth & Ryan 2003), 
frequent patterns (Han & Kamber 2006) and Live 
Sequence Charts (Harel & Marelly 2003). 

BACKGROUND

Different from many other engineering products, 
software changes often during its lifespan (Lehman 
& Belady 1985). The process of making changes to a 
piece of software e.g., to fix bugs, to add features, etc., 
is known as software maintenance. During maintenance, 
there is a need to understand the current version of 
the software to be changed. This process is termed as 
program comprehension. Program comprehension is 
estimated to take up to 50% of software maintenance 
efforts which in turn is estimated to contribute up to 
90% of total software costs (Erlikh 2000, Standish 
1984; Canfora & Cimitile 2002). Considering the 
$216.0 billion of software component contribution to 
the US GDP at second quarter 2007, the cost associated 
with program comprehension potentially goes up to 
billions of dollars (BEA 2007). One of the root causes 
of this problem is the fact that documented software 
specification is often missing, incomplete or outdated 
(Deelstra, Sinnema & Bosch 2004). Mining software 
specifications is a promising solution to reduce software 
costs by reducing program comprehension efforts.

On another angle, software dependability is a well 
sought after goal. Ensuring software runs correctly at 
all times and identifying bugs are two major activities 
pertaining to dependability. Dependability is certainly 
an important issue as incorrect software has caused 
the loss of billions of dollars and even the loss of lives 
(NIST 2002; ESA & CNES 1996; GAO 1992). There 
are existing tools for performing program verification. 
These tools take formal specifications and automatically 
check them against programs to discover inconsisten-
cies, identify bugs or ensure that all possible paths in 
the program satisfy the specification (Clarke, Grumberg 
& Peled 1999). However, programmers’ reluctance 
and difficulty in writing formal specifications have 
been some of the barriers to the widespread adoption 

Section: Software

Mining Software Specifications
David Lo
National University of Singapore, Singapore

Siau-Cheng Khoo
National University of Singapore, Singapore

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



1304  

Mining Software Specifications

of such tools in the industry (Ammons, Bodik & Larus 
2002, Holtzmann 2002).  Mining software specifica-
tions can help to improve software dependability by 
providing these formal specifications automatically 
to these tools.

MAIN FOCUS

There are a number of specification mining algorithms 
available. These algorithms can be categorized into 
families based on the target specification formalisms 
they mine. These include specification miners that mine 
Boolean expressions (Ernst, Cockrell, Griswold and 
Notkin 2001), automata (Cook & Wolf 1998; Reiss & 
Reinieris, 2001; Ammons, Bodik & Larus 2002; Lo & 
Khoo 2006a; Lo & Khoo 2006b; Mariani, Papagiannakis 
and Pezzè 2007; Archaya, Xie, Pei & Xu, 2007;  etc.), 
Linear Temporal Logic expressions (Yang, et al. 2006; 
Lo, Khoo & Liu 2007b; Lo, Khoo & Liu 2008, etc.), 
frequent patterns (Li & Zhou, 2005; El-Ramly, Stroulia 
& Sorenson, 2002; Lo, Khoo & Liu 2007a; etc.) and 
Live Sequence Charts (Lo, Maoz & Khoo 2007a, Lo, 
Maoz & Khoo 2007b). 

These mined specifications can aid programmers 
in understanding existing software systems. Also, a 
mined specification can be converted to run-time tests 
(Mariani, Papagiannakis & Pezzè 2007; Lo, Maoz & 
Khoo 2007a; Lo, Maoz & Khoo 2007b) or input as 
properties-to-verify to standard program verification 
tools (Yang, Evans, Bhardwaj, Bhat and Das, 2006; 
Lo, Khoo & Liu 2007b).  

Preliminaries

Before proceeding further, let us describe some prelimi-
naries. Specifications can be mined from either traces 
or code. A program trace is a sequence of events. Each 
event in a trace can correspond to a statement being 
executed, or a method being called, etc. In many work, 
an event is simply the signature of a method that is 
being called. Traces can be collected in various ways. 
A common method is to instrument a code by insert-
ing `print’ statement to various locations in the code. 
Running the instrumented code will produce a trace 
file which can then be analyzed. 

Mining Boolean Expressions

Ernst, Cockrell, Griswold and Notkin (2001) propose 
an algorithm that mines Boolean expressions from 
program execution traces at specific program points. 
Sample Boolean expressions mined are x=y+z, x>5, 
etc. The algorithm is based on a set of templates which 
is then matched against the program execution traces. 
Template instances that are satisfied by the traces above 
a certain threshold are outputted to the user.

Mining Automata

Simply put, an automaton is a labeled transition system 
with start and end nodes. Traversing an automaton from 
start to end nodes will produce a sentence, which will 
correspond to a program behavior (e.g., file protocol: 
open-read-write-close). An automaton represents a 
set of valid sentences that a program can behave. An 
example of an automaton representing a file protocol 
is drawn in Figure 1.

One of the pioneering work on mining automata 
is the work by Ammons, Bodik and Larus (2002). In 
their work, a set of pre-processed traces are input to 
an automata learner (Raman & Patrick, 1997). The 
output of the learner is a specification in the form of 
an automaton learned from the trace file. This automa-
ton is then presented to end users for fine tuning and 
modifications.

Lo and Khoo (2006a) define several metrics for as-
sessing the quality of specification mining algorithms 
that mine automata. Among these metrics, precision and 
recall are introduced as measures of accuracy to exist-
ing specification miners producing automata. Precision 
refers to the proportion of sentences accepted by the 
language described by the mined automaton that are 
also accepted by the true specification. Recall refers to 

Figure 1. File protocol specification

0 1 2open

read

writeclose

close



 

 

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/mining-software-specifications/10990

Related Content

Data Mining in the Telecommunications Industry
Gary Weiss (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 486-491).

www.irma-international.org/chapter/data-mining-telecommunications-industry/10864

Direction-Aware Proximity on Graphs
Hanghang Tong, Yehuda Korenand Christos Faloutsos (2009). Encyclopedia of Data Warehousing and Mining,

Second Edition (pp. 646-653).

www.irma-international.org/chapter/direction-aware-proximity-graphs/10889

Program Comprehension through Data Mining
Ioannis N. Kouris (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1603-1609).

www.irma-international.org/chapter/program-comprehension-through-data-mining/11033

Wrapper Feature Selection
Kyriacos Chrysostomou (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 2103-

2108).

www.irma-international.org/chapter/wrapper-feature-selection/11110

Promoting Critical Thinking Disposition Through Virtual Reality Serious Games
Su Jiayuanand Jingru Zhang (2024). Embracing Cutting-Edge Technology in Modern Educational Settings (pp.

93-118).

www.irma-international.org/chapter/promoting-critical-thinking-disposition-through-virtual-reality-serious-games/336192

http://www.igi-global.com/chapter/mining-software-specifications/10990
http://www.igi-global.com/chapter/mining-software-specifications/10990
http://www.irma-international.org/chapter/data-mining-telecommunications-industry/10864
http://www.irma-international.org/chapter/direction-aware-proximity-graphs/10889
http://www.irma-international.org/chapter/program-comprehension-through-data-mining/11033
http://www.irma-international.org/chapter/wrapper-feature-selection/11110
http://www.irma-international.org/chapter/promoting-critical-thinking-disposition-through-virtual-reality-serious-games/336192

