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INTRODUCTION

Recent technological advances in 3D digitizing, non-
invasive scanning, and interactive authoring have 
resulted in an explosive growth of 3D models in the 
digital world. There is a critical need to develop new 
3D data mining techniques for facilitating the indexing, 
retrieval, clustering, comparison, and analysis of large 
collections of 3D models. These approaches will have 
important impacts in numerous applications including 
multimedia databases and mining, industrial design, 
biomedical imaging, bioinformatics, computer vision, 
and graphics.

For example, in similarity search, new shape index-
ing schemes (e.g. (Funkhouser et al., 2003)) are studied 
for retrieving similar objects from databases of 3D 
models. These shape indices are designed to be quick 
to compute, concise to store, and easy to index, and so 
they are often relatively compact. In computer vision 
and medical imaging, more powerful shape descriptors 
are developed for morphometric pattern discovery (e.g.,  
(Bookstein, 1997; Cootes, Taylor, Cooper, & Graham, 
1995; Gerig, Styner, Jones, Weinberger, & Lieberman, 
2001; Styner, Gerig, Lieberman, Jones, & Weinberger, 
2003)) that aims to detect or localize shape changes 
between groups of 3D objects. This chapter describes 
a general shape-based 3D data mining framework for 
morphometric pattern discovery.

BACKGROUND

The challenges of morphometric pattern discovery are 
twofold: (1) How to describe a 3D shape and extract 
shape features; and (2) how to use shape features for 
pattern analysis to find discriminative regions. Several 
shape descriptors have been proposed for extracting 

shape features, including landmark-based descriptors 
(Bookstein, 1997; Cootes, Taylor, Cooper, & Graham, 
1995), deformation fields (Csernansky et al., 1998), 
distance transforms (Golland, Grimson, Shenton, & 
Kikinis, 2001), medial axes (Styner, Gerig, Lieberman, 
Jones, & Weinberger, 2003), and parametric surfaces 
(Gerig, Styner, Jones, Weinberger, & Lieberman, 2001). 
Using these features, researchers have developed 
different pattern analysis techniques for discovering 
morphometric patterns, including linear discriminant 
analysis (Csernansky et al., 1998), support vector ma-
chines (Golland, Grimson, Shenton, & Kikinis, 2001), 
principal component analysis (Saykin et al., 2003), and 
random field theory (Chung et al., 2005). 

This chapter describes a general surface-based 
computational framework for mining 3D objects to 
localize shape changes between groups. The spherical 
harmonic (SPHARM) method is employed for surface 
modeling, where several important shape analysis issues 
are addressed, including spherical parameterization, 
surface registration, and multi-object alignment. Two 
types of techniques are employed for statistical shape 
analysis: (1) linear classifiers based on a point distri-
bution model, and (2) random field theory combined 
with heat kernel smoothing.

MAIN FOCUS

Given a set of labeled 3D objects from two distinct 
shape classes, our task is to identify morphometric 
patterns that can distinguish these two classes. An 
important real-life application is to detect anatomical 
changes due to pathology in biomedical imaging. A 
surface-based computational framework is presented 
to solve this problem in three steps: data collection and 
preprocessing, surface modeling for feature extraction, 
and pattern analysis and visualization.
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Data Collection and Preprocessing

3D models can be collected using different methods 
including 3D digitizing, non-invasive scanning and in-
teractive authoring. This chapter focuses on the analysis 
of 3D models whose surface topology is spherical. For 
example, in medical domain, many human organs and 
structures belong to this category. After performing 
segmentation on 3D medical scans (e.g., CT, MRI), 
the boundary of a structure of interest can be extracted. 
Since such a 3D boundary model may contain unwanted 
holes, a preprocessing step sometimes is required to 
close these 3D holes (Aktouf, Bertrand, & Perroton, 
2002). An alternative approach is to perform automatic 
segmentation with appropriate constraints and create 
topologically correct results directly from images. 
After removing unwanted 3D holes, the surface of the 
3D model has a spherical topology, which meets the 
requirement of our surface modeling approach.

Surface Modeling

Spherical harmonics were first used as a type of para-
metric surface representation for radial surfaces r(θ,φ) 
in (Ballard & Brown, 1982), where the harmonics were 
used as basis functions to expand r(θ,φ). Recently, an 
extended method, called SPHARM, was proposed in 
(Brechbuhler, Gerig, & Kubler, 1995) to model arbi-
trarily shaped but simply connected 3D objects, where 
three functions of θ and φ were used to represent a 
surface. SPHARM is suitable for surface comparison 
and can deal with protrusions and intrusions. Due to 
its numerous advantages such as inherent interpola-
tion, implicit correspondence, and accurate scaling, 
SPHARM is employed here, requiring three processing 
steps: (1) spherical parameterization, (2) SPHARM 
expansion, and (3) SPHARM normalization.

(1) Spherical parameterization creates a continu-
ous and uniform mapping from the object surface on 
to the unit sphere, and its result is a bijective mapping 
between each point v on the object surface and spheri-
cal coordinates θ and φ:

( , ) ( ( , ), ( , ), ( , ))Tv x y z=

The classical approach exploits the uniform 
quadrilateral structure of a voxel surface and solves 
a constrained optimization problem to minimize area 

and angle distortions of the parameterization. The ap-
proach can be applied only to voxel surfaces and not 
to general triangle meshes. A new algorithm CALD 
(Shen & Makedon, 2006) has been proposed to control 
both area and length distortions and make SPHARM 
applicable to general triangle meshes. 

(2) The SPHARM expansion requires a spherical 
parameterization performed in advance. The param-
eterization has the form of:

( , ) ( ( , ), ( , ), ( , ))Tv x y z=  , 

Where x(θ,φ), y(θ,φ) and z(θ,φ) are three spherical 
functions. Spherical harmonics are a natural choice of 
basis functions for representing any twice-differentiable 
spherical function. To describe the object surface, 
we can expand these three spherical functions using 
spherical harmonics ( , )m

lY , where ( , )m
lY  denotes 

the spherical harmonic of degree l and order m. The 
expansion takes the form:
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The coefficients cl
m up to a user-desired degree can 

be estimated by solving a linear system. The object 
surface can be reconstructed using these coefficients, 
and using more coefficients leads to a more detailed 
reconstruction (Figure 1). 

(3) SPHARM normalization creates a shape descrip-
tor (i.e., excluding translation, rotation, and scaling) 
from a normalized set of SPHARM coefficients, which 
are comparable across objects. A typical approach is as 
follows: (1) Rotation invariance is achieved by align-
ing the degree one ellipsoid; (2) scaling invariance is 
achieved by dividing all the coefficients by a scaling 
factor; (3) ignoring the degree zero coefficient results 
in translation invariance. 

Using the degree one ellipsoid for establishing 
surface correspondence and aligning objects may not 
be sufficient in many cases (e.g., the ellipsoid becomes 
a sphere). A more general method for establishing sur-
face correspondence is to minimize the mean squared 
distance between two corresponding surfaces (Huang 
et al., 2005). 
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