
1142 Section: Clustering

Learning Kernels for Semi-Supervised 
Clustering
Bojun Yan
George Mason University, USA

Carlotta Domeniconi
George Mason University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

As a recent emerging technique, semi-supervised 
clustering has attracted significant research interest. 
Compared to traditional clustering algorithms, which 
only use unlabeled data, semi-supervised clustering 
employs both unlabeled and supervised data to obtain 
a partitioning that conforms more closely to the user's 
preferences. Several recent papers have discussed this 
problem (Cohn, Caruana, & McCallum, 2003; Bar-
Hillel, Hertz, Shental, & Weinshall, 2003; Xing, Ng, 
Jordan, & Russell, 2003; Basu, Bilenko, & Mooney, 
2004; Kulis, Dhillon, & Mooney, 2005).

In semi-supervised clustering, limited supervision is 
provided as input. The supervision can have the form of 
labeled data or pairwise constraints. In many applica-
tions it is natural to assume that pairwise constraints 
are available (Bar-Hillel, Hertz, Shental, & Weinshall, 
2003; Wagstaff, Cardie, Rogers, & Schroedl, 2001). For 
example, in protein interaction and gene expression data 
(Segal, Wang, & Koller, 2003), pairwise constraints can 
be derived from the background domain knowledge. 
Similarly, in information and image retrieval, it is easy 
for the user to provide feedback concerning a qualitative 
measure of similarity or dissimilarity between pairs of 
objects. Thus, in these cases, although class labels may 
be unknown, a user can still specify whether pairs of 
points belong to the same cluster (Must-Link) or to 
different ones (Cannot-Link). Furthermore, a set of 
classified points implies an equivalent set of pairwise 
constraints, but not vice versa. Recently, a kernel method 
for semi-supervised clustering has been introduced 
(Kulis, Dhillon, & Mooney, 2005). This technique 
extends semi-supervised clustering to a kernel space, 
thus enabling the discovery of clusters with non-linear 
boundaries in input space. While a powerful technique, 
the applicability of a kernel-based semi-supervised 
clustering approach is limited in practice, due to the 

critical settings of kernel's parameters. In fact, the 
chosen parameter values can largely affect the quality 
of the results. While solutions have been proposed in 
supervised learning to estimate the optimal kernel’s 
parameters, the problem presents open challenges when 
no labeled data are provided, and all we have available 
is a set of pairwise constraints. 

BACKGROUND

In the context of supervised learning, the work in 
(Chapelle & Vapnik) considers the problem of automati-
cally tuning multiple parameters for a support vector 
machine. This is achieved by minimizing the estimated 
generalization error achieved by means of a gradient 
descent approach over the set of parameters. In (Wang, 
Xu, Lu, & Zhang, 2002), a Fisher discriminant rule 
is used to estimate the optimal spread parameter of a 
Gaussian kernel. The authors in (Huang, Yuen, Chen 
& Lai, 2004) propose a new criterion to address the 
selection of kernel's parameters within a kernel Fisher 
discriminant analysis framework for face recognition. A 
new formulation is derived to optimize the parameters 
of a Gaussian kernel based on a gradient descent algo-
rithm. This research makes use of labeled data to address 
classification problems. In contrast, the approach we 
discuss in this chapter optimizes kernel's parameters 
based on unlabeled data and pairwise constraints, and 
aims at solving clustering problems. In the context 
of semi-supervised clustering, (Cohn, Caruana, & 
McCallum, 2003) uses gradient descent combined with 
a weighted Jensen-Shannon divergence for EM cluster-
ing. (Bar-Hillel, Hertz, Shental, & Weinshall, 2003) 
proposes a Redundant Component Analysis (RCA) 
algorithm that uses only must-link constraints to learn 
a Mahalanobis distance. (Xing, Ng, Jordan, & Russell, 
2003) utilizes both must-link and cannot-link constraints 
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to formulate a convex optimization problem which 
is local-minima-free. (Segal, Wang, & Koller, 2003) 
proposes a unified Markov network with constraints. 
(Basu, Bilenko, & Mooney, 2004) introduces a more 
general HMRF framework, that works with different 
clustering distortion measures, including Bregman di-
vergences and directional similarity measures. All these 
techniques use the given constraints and an underlying 
(linear) distance metric for clustering points in input 
space. (Kulis, Dhillon, & Mooney, 2005) extends the 
semi-supervised clustering framework to a non-linear 
kernel space. However, the setting of the kernel's pa-
rameter is left to manual tuning, and the chosen value 
can largely affect the results. The selection of kernel's 
parameters is a critical and open problem, which has 
been the driving force behind our research work. 

MAIN FOCUS

In kernel-based learning algorithms, a kernel func-
tion K(xi, xj) allows the calculation of dot products in 
feature space without knowing explicitly the mapping 
function. It is important that the kernel function in use 
conforms to the learning target. For classification, the 
distribution of data in feature space should be correlated 
to the label distribution. Similarly, in semi-supervised 
clustering, one wishes to learn a kernel that maps pairs 
of points subject to a must-link constraint close to each 
other in feature space, and maps points subject to a 
cannot-link constraint far apart in feature space. The 
authors in (Cristianini, Shawe-Taylor, & Elisseeff) 
introduce the concept of kernel alignment to measure 
the correlation between the groups of data in feature 
space and the labeling to be learned. In (Wang, Xu, 
Lu & Zhang), a Fisher discriminant rule is used to 
estimate the optimal spread parameter of a Gaussian 
kernel. The selection of kernel's parameters is indeed 
a critical problem. For example, empirical results in 
the literature have shown that the value of the spread 
parameter σ of a Gaussian kernel can strongly affect 
the generalization performance of an SVM. Values of 
σ which are too small or too large lead to poor gener-
alization capabilities. When σ → 0, the kernel matrix 
becomes the identity matrix. In this case, the resulting 
optimization problem gives Lagrangians which are 
all 1s, and therefore every point becomes a support 
vector. On the other hand, when σ → ∞, the kernel 
matrix has entries all equal to 1, and thus each point 

in feature space is maximally similar to each other. In 
both cases, the machine will generalize very poorly. The 
problem of setting kernel's parameters, and of finding 
in general a proper mapping in feature space, is even 
more difficult when no labeled data are provided, and 
all we have available is a set of pairwise constraints. In 
our research we utilize the given constraints to derive 
an optimization criterion to automatically estimate the 
optimal kernel's parameters. Our approach integrates 
the constraints into the clustering objective function, 
and optimizes the kernel's parameters iteratively while 
discovering the clustering structure. Specifically, 
we steer the search for optimal parameter values by 
measuring the amount of must-link and cannot-link 
constraint violations in feature space. Following the 
method proposed in (Basu, Bilenko, & Mooney, 2004; 
Bilenko, Basu, & Mooney), we scale the penalty terms 
by the distances of points, that violate the constraints, 
in feature space. That is, for violation of a must-link 
constraint (xi, xj), the larger the distance between the 
two points xi and xj in feature space, the larger the 
penalty; for violation of a cannot-link constraint (xi, xj), 
the smaller the distance between the two points xi and 
xj in feature space, the larger the penalty. Considering 
the Gaussian kernel function
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(where xr is a point randomly selected from data set 
X) to avoid the trivial minimization of the objective 
function Jkernel–obj, we obtain the following function:
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where LM is the set of must-link constraints, LC is 
the set of cannot-link constraints, �c represents the 
Cth cluster, x' and x'' are the farthest points in feature 
space, wij and ijw

ij are the penalty costs for violating a 
must-link and a cannot-link constraints respectively, 
and li represents the cluster label of xi. The resulting 
minimization problem is non-convex.



 

 

2 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/learning-kernels-semi-supervised-clustering/10965

Related Content

Conceptual Modeling for Data Warehouse and OLAP Applications
Elzbieta Malinowskiand Esteban Zimányi (2009). Encyclopedia of Data Warehousing and Mining, Second

Edition (pp. 293-300).

www.irma-international.org/chapter/conceptual-modeling-data-warehouse-olap/10835

Web Page Extension of Data Warehouses
Anthony Scime (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 2090-2095).

www.irma-international.org/chapter/web-page-extension-data-warehouses/11108

Feature Reduction for Support Vector Machines
Shouxian Chengand Frank Y. Shih (2009). Encyclopedia of Data Warehousing and Mining, Second Edition

(pp. 870-877).

www.irma-international.org/chapter/feature-reduction-support-vector-machines/10922

Real-Time Face Detection and Classification for ICCTV
Brian C. Lovell, Shaokang Chenand Ting Shan (2009). Encyclopedia of Data Warehousing and Mining,

Second Edition (pp. 1659-1666).

www.irma-international.org/chapter/real-time-face-detection-classification/11041

Ensemble Data Mining Methods
Nikunj C. Oza (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 770-776).

www.irma-international.org/chapter/ensemble-data-mining-methods/10907

http://www.igi-global.com/chapter/learning-kernels-semi-supervised-clustering/10965
http://www.igi-global.com/chapter/learning-kernels-semi-supervised-clustering/10965
http://www.irma-international.org/chapter/conceptual-modeling-data-warehouse-olap/10835
http://www.irma-international.org/chapter/web-page-extension-data-warehouses/11108
http://www.irma-international.org/chapter/feature-reduction-support-vector-machines/10922
http://www.irma-international.org/chapter/real-time-face-detection-classification/11041
http://www.irma-international.org/chapter/ensemble-data-mining-methods/10907

