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INTRODUCTION

Machine learning has experienced a great advance in 
the eighties and nineties due to the active research in 
artificial neural networks and adaptive systems. These 
tools have demonstrated good results in many real ap-
plications, since neither a priori knowledge about the 
distribution of the available data nor the relationships 
among the independent variables should be necessar-
ily assumed. Overfitting due to reduced training data 
sets is controlled by means of a regularized functional 
which minimizes the complexity of the machine. Work-
ing with high dimensional input spaces is no longer 
a problem thanks to the use of kernel methods. Such 
methods also provide us with new ways to interpret the 
classification or estimation results. Kernel methods are 
emerging and innovative techniques that are based on 
first mapping the data from the original input feature 
space to a kernel feature space of higher dimensional-
ity, and then solving a linear problem in that space. 
These methods allow us to geometrically design (and 
interpret) learning algorithms in the kernel space (which 
is nonlinearly related to the input space), thus combin-
ing statistics and geometry in an effective way. This 
theoretical elegance is also matched by their practical 
performance. 

Although kernels methods have been considered 
from a long time ago in pattern recognition from a theo-
retical point of view (see, e.g., Capon, 1965), a number 
of powerful kernel-based learning methods emerged in 
the last decade. Significant examples are Support Vector 
Machines (SVMs) (Vapnik, 1998), Kernel Fisher Dis-
criminant (KFD), (Mika, Ratsch, Weston, Scholkopf, & 
Mullers, 1999) Analysis, Kernel Principal Component 
Analysis (PCA) (Schölkopf, Smola and Müller, 1996), 

Kernel Independent Component Analysis Kernel (ICA) 
(Bach and Jordan, 2002), Mutual Information (Gretton, 
Herbrich, Smola, Bousquet, Schölkopf, 2005), Kernel 
ARMA (Martínez-Ramón, Rojo-Álvarez, Camps-Valls, 
Muñoz-Marí, Navia-Vázquez, Soria-Olivas, & Figuei-
ras-Vidal, 2006),  Partial Least Squares (PLS) (Momma 
& Bennet, 2003), Ridge Regression (RR) (Saunders, 
Gammerman, & Vovk, 1998), Kernel K-means (KK-
means) (Camastra, & Verri,  2005), Spectral Clustering 
(SC) (Szymkowiak-Have, Girolami & Larsen, 2006), 
Canonical Correlation Analysis (CCA) (Lai & Fyfe, 
2000), Novelty Detection (ND) (Schölkopf, William-
son, Smola, & Shawe-Taylor, 1999) and a particular 
form of regularized AdaBoost (Reg-AB), also known 
as Arc-GV (Rätsch, 2001). Successful applications of 
kernel-based algorithms have been reported in various 
fields such as medicine, bioengineering, communica-
tions, data mining, audio and image processing or 
computational biology and bioinformatics. 

In many cases, kernel methods demonstrated results 
superior to their competitors, and also revealed some 
additional advantages, both theoretical and practical. 
For instance, kernel methods (i) efficiently handle large 
input spaces, (ii) deal with noisy samples in a robust 
way, and (iii) allow embedding user knowledge about 
the problem into the method formulation easily. The 
interest of these methods is twofold. On the one hand, 
the machine-learning community has found in the kernel 
concept a powerful framework to develop efficient non-
linear learning methods, and thus solving efficiently 
complex problems (e.g. pattern recognition, function 
approximation, clustering, source independence, and 
density estimation). On the other hand, these methods 
can be easily used and tuned in many research areas, 
e.g. biology, signal and image processing, communica-
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tions, etc, which has also captured the attention of many 
researchers and practitioners in safety-related areas.

BACKGROUND

Kernel Methods offer a very general framework for 
machine learning applications (classification, cluster-
ing regression, density estimation and visualization) 
over many types of data (time series, images, strings, 
objects, etc). The main idea of kernel methods is to 
embed the data set S ⊆ X into a higher (possibly infinite) 
dimensional Hilbert space . The mapping of the data 
S into the Hilbert Space  is done through a nonlinear 
transformation x  f(x). Thus, there will be a nonlinear 
relationship between the input data x and its image in . 
Then, one can use linear algorithms to detect relations 
in the embedded data that will be viewed as nonlinear 
from the point of view of the input data. 

This is a key point of the field: using linear algorithms 
provides many advantages since a well-established 
theory and efficient methods are available. The mapping 
is denoted here by f:X → , where the Hilbert space 
 is commonly known also as feature space. Linear 
algorithms will benefit from this mapping because of 
the higher dimensionality of the Hilbert space. The 
computational burden would dramatically increase if 
one needed to deal with high dimensionality vectors, 
but there is a useful trick (the kernel trick) that allows 
us to use kernel methods. As a matter of fact, one can 
express almost any linear algorithm as a function of 
dot products among vectors. Then, one does not need 
to work with the vectors once the dot products have 
been computed. The kernel trick consists of comput-
ing the dot products of the data into the Hilbert space 
 as a function of the data in the input space. Such a 
function is called a Mercer’s kernel. If it is available, 
one can implement a linear algorithm into a higher 
(possibly infinite) Hilbert Space  without needing 
to explicitly deal with vectors in these space, but just 
their dot products. Figure 1 illustrates several kernel 
methods in the feature spaces. In Figure 1(a), the clas-
sical SVM is shown, which basically solves the (linear) 
optimal separating hyperplane in a high dimensional 
feature spaces. Figure 1(b) shows the same procedure 
for the KFD, and Figure 1(c) shows how a novelty 
detection (known as one-class SVM) can be developed 
in feature spaces.

The above procedures are done under the frame-
work of the Theorem of Mercer (Aizerman, Braver-
man & Rozonoér, 1964). A Hilbert space  is said to 
be a Reproducing Kernel Hilbert Space (RKHS) with 
a Reproducing Kernel Inner Product K (often called 
RKIP or more commonly, Kernel) if the members of 
 are functions on a given interval T and if kernel K 
is defined on the product T × T having the properties 
(Aronszajn, 1950):

•	 for every t  T , K(·,t)  , with value at s  T 
equal to K(s,t).

• There is a reproducing kernel inner product defined 
as (g, K(·,t))K = g(t) for every g in .

The Mercer’s theorem states that there exist a func-
tion j: n →  and a dot product K(s, t) = 〈j(s), j(t)〉 
if and only if for any function g(t) for which ∫g(t)dt < 
∞ the inequality ∫K(s, t)g(s)g(t)dsdt ≥ 0 is satisfied.

This condition is not always easy to prove for 
any function. The first kernels to be proven to fit the 
Mercer theorem were the polynomial kernel and the 
Gaussian kernel.

It is worth noting here that mapping f does not 
require to be explicitly known to solve the problem. 
In fact, kernel methods work by computing the simi-
larity among training samples (the so-called kernel 
matrix) by implicitly measuring distances in the fea-
ture space through the pair-wise inner products 〈f(x), 
f(z)〉	between mapped samples x, z ∈	X. The matrix 
Kij = K(xi, xj) (where xi, xj are data points) is called the 
kernel matrix and contains all necessary information 
to perform many (linear) classical algorithms in the 
embedding space. As we said before, a linear algorithm 
can be transformed into its non-linear version with the 
so-called kernel trick.

The interested reader can find more information 
about all these methods in (Vapnik, 1998; Cristianini 
& Shawe-Taylor, 2000; Schölkopf & Smola, 2002; 
Shawe-Taylor & Cristianini, 2004). Among all good 
properties revised before, at present the most active 
area of research is the design of kernels for specific 
domains, such as string sequences in bioinformatics, 
image data, text documents, etc. The website www.ker-
nel-machines.org provides free software, datasets, and 
constantly updated pointers to relevant literature.
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