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INTRODUCTION

Sequence alignment is one of the most fundamental 
problems in computational biology. Ordinarily, the 
problem aims to align symbols of given sequences in a 
way to optimize similarity score. This score is computed 
using a given scoring matrix that assigns a score to 
every pair of symbols in an alignment. The expectation 
is that scoring matrices perform well for alignments of 
all sequences. However, it has been shown that this is 
not always true although scoring matrices are derived 
from known similarities. Biological sequences share 
common sequence structures that are signatures of 
common functions, or evolutionary relatedness. The 
alignment process should be guided by constraining 
the desired alignments to contain these structures 
even though this does not always yield optimal scores. 
Changes in biological sequences occur over the course 
of millions of years, and in ways, and orders we do not 
completely know. Sequence alignment has become a 
dynamic area where new knowledge is acquired, new 
common structures are extracted from sequences, and 
these yield more sophisticated alignment methods, 
which in turn yield more knowledge. This feedback 
loop is essential for this inherently difficult task.  

The ordinary definition of sequence alignment 
does not always reveal biologically accurate similari-
ties. To overcome this, there have been attempts that 
redefined sequence similarity. Huang (1994) proposed 
an optimization problem in which close matches are 
rewarded more favorably than the same number of 
isolated matches. Zhang, Berman & Miller (1998) 
proposed an algorithm that finds alignments free of low 
scoring regions. Arslan, Eğecioğlu, & Pevzner (2001) 
proposed length-normalized local sequence alignment 
for which the objective is to find subsequences that 
yield maximum length-normalized score where  the 
length-normalized score of a given alignment is its 
score divided by sum of subsequence-lengths involved 
in the alignment. This can be considered as a context-
dependent sequence alignment where a high degree of 
local similarity defines a context. Arslan, Eğecioğlu, 

& Pevzner (2001) presented a fractional programming 
algorithm for the resulting problem. Although these 
attempts are important, some biologically meaningful 
alignments can contain motifs whose inclusions are 
not guaranteed in the alignments returned by these 
methods. Our emphasis in this chapter is on methods 
that guide sequence alignment by requiring desired 
alignments to contain given common structures identi-
fied in sequences (motifs).

BACKGROUND

Given two strings S1, and S2, the pairwise sequence 
alignment can be described as a writing scheme such 
that we use a two-row-matrix in which the first row is 
used for the symbols of S1, and the second row is used 
for those of S2, and each symbol of one string can be 
aligned to (i.e. it appears on the same column with) a 
symbol of the other string, or the blank symbol ´-´. A 
matrix obtained this way is called an alignment matrix. 
No column can be entirely composed of blank symbols. 
Each column has a weight. The score of an alignment 
is the total score of the columns in the correspond-
ing alignment matrix. Fig. 1 illustrates an example 
alignment between two strings ACCGCCAGT and 
TGTTCACGT.

The following is the Needleman-Wunsch global 
alignment formulation (Durbin et al., 1998) that, for 
two given strings S1[1] . . . S1[n] and S2[1] . . . S2[m], 
computes

Figure 1. An example alignment with five matches
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Hi,j = max{ Hi-1,j+γ(S1[i],´-´), Hi-1,j-1+γ(S1[i],S2[j]), 

Hi,j-1+γ(´-´,S2[j]) }    (1)

for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤  m, with the boundary values 
H0,0 = 0, H0,j = H0,j−1 + γ(´-´,S2[j]), and Hi,0 = Hi−1,0 + 
γ(S1[i], ´-´ ) where γ is a given score function. Then 
Hn,m is the maximum global alignment score between 
S1 and S2.  For the strings in Fig. 1, if γ(x,y)=1 when 
x=y, and 0 otherwise, then the maximum alignment 
score is H9,9=5. The figure shows an optimal alignment 
matrix with 5 matches each indicated by a vertical line 
segment. The well-known Smith-Waterman local align-
ment algorithm (Durbin et al., 1998) modifies Equation 
(1) by adding 0 as a new max-term. This means that 
a new local alignment can start at any position in the 
alignment matrix if a positive score cannot be obtained 
by local alignments that start before this position. For 
the example strings in Fig. 1, if the score of a match is 
+1, and each of all other scores is -1, then the optimum 
local alignment score is 3, and it is obtained between 
the suffixes CAGT, and CACGT of the two strings, 
respectively. 

The definition of pairwise sequence alignment for 
a pair of sequences can be generalized to the multiple 
sequence alignment problem (Durbin et al., 1998). A 
multiple sequence alignment of k sequences involves a 
k-row alignment matrix, and there are various scoring 
schemes (e.g. sum of pairwise distances) assigning a 
weight to each column.

Similarity measures based on computed scores only 
does not always reveal biologically relevant similarities 
(Comet & Henry, 2002). Some important local similari-
ties can be overshadowed by other alignments (Zhang, 
Berman & Miller, 1998). A biologically meaningful 
alignment should include a region in it where common 
sequence structures (if they exist) are aligned together 
although this would not always yield higher scores. It 
has also been noted that biologists favor integrating 
their knowledge about common patterns, or structures 
into the alignment process to obtain biologically more 
meaningful similarities (Tang et al., 2002; Comet & 
Henry, 2002). For example, when comparing two protein 
sequences it may be important to take into account a 
common specific or putative structure which can be 
described as a subsequence. This gave rise to a number 
of constrained sequence alignment problems. Tang et 
al. (2002) introduced the constrained multiple sequence 
alignment (CMSA) problem where the constraint for 
the desired alignment(s) is inclusion of a given sub-

sequence. This problem and its variations have been 
studied in the literature, and different algorithms have 
been proposed (e.g. He, Arslan, & Ling, 2006; Chin 
et al., 2003).

Arslan and Eğecioğlu (2005) suggested that the 
constraint could be inclusion of a subsequence within a 
given edit distance (number of edit operations to change 
one string to another). They presented an algorithm 
for the resulting constrained problem. This was a step 
toward allowing in the constraint patterns that may 
slightly differ in each sequence. 

Arslan (2007) introduced the regular expression 
constrained sequence alignment (RECSA) problem in 
which alignments are required to contain a given com-
mon sequence described by a given regular expression, 
and he presented an algorithm for it. 

MAIN FOCUS

Biologists prefer to incorporate their knowledge into 
the alignment process by guiding alignments to contain 
known sequence structures. We focus on motifs that are 
described as a subsequence, or a regular expression, 
and their use in guiding sequence alignment.

Subsequence Motif

The constraint for the alignments sought can be in-
clusion of a given pattern string as a subsequence. A 
motivation for this case comes from the alignment 
of RNase (a special group of enzymes) sequences. 
Such sequences are all known to contain “HKH’’ as a 
substring. Therefore, it is natural to expect that in an 
alignment of RNase sequences, each of the symbols 
in “HKH’’ should be aligned in the same column, i.e. 
an alignment sought satisfies the constraint described 
by the sequence “HKH”. The alignment shown in Fig. 
1 satisfies the constraint for the subsequence pattern 
“CAGT”.

Chin et al. (2003) present an algorithm for the 
constrained multiple sequence alignment (CMSA) 
problem. Let S1, S2, ..., Sn be given n sequences to be 
aligned, and let  P[1..r] be a given pattern constraining 
the alignments. The algorithm modifies the dynamic-
programming solution of the ordinary multiple sequence 
alignment (MSA). It adds a new dimension of size r+1 
such that each position k, 0≤k≤r, on this dimension can 
be considered as a layer that corresponds to the ordi-
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