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INTRODUCTION

Data mining has grown to include many more data 
types than the “traditional” flat files with numeric or 
categorical attributes.  Images, text, video, and the inter-
net are now areas of burgeoning data mining research.  
Graphical data is also an area of interest, since data in 
many domains—such as engineering design, network 
intrusion detection, fraud detection, criminology, docu-
ment analysis, pharmacology, and biochemistry—can 
be represented in this form.

Graph mining algorithms and methods are fewer 
and less mature than those designed for numerical or 
categorical data.  In addition, the distinction between 
graph matching and graph mining is not always clear.  

In graph mining, we often want to find all possible 
frequent subgraphs of all possible sizes that occur a 
specified minimum number of times.  That goal involves 
iteratively matching incrementally larger subgraphs, 
while classical graph matching is a single search for a 
static subgraph. Also, graph mining is an unsupervised 
learning task. Instead of searching for a single match to 
a specific graph, we are looking for known or unknown 
graphs embedded in the data. 

BACKGROUND

A graph G is a structure that contains a set of vertices 
V and their incident edges E and comprises many 

Figure 1. Graph structures
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G
substructures (see Figure 1).  A general subgraph is a 
subset of any vertices and edges in the parent graph.  An 
induced subgraph contains a subset of the vertices and 
all edges between those vertices that exist in the parent 
graph.  A connected subgraph is a subset of vertices 
that are connected with edges; no isolated vertices are 
allowed.  Trees are acyclic, directed, branched sub-
graphs that can be ordered (the order of branch nodes 
is fixed) or unordered (the order of branch nodes is of 
no concern).  Rooted trees have one vertex with no 
edges coming into it; all other vertices are reachable 
from the root, while free trees have no root.  A path is 
a subgraph that has no branches.

The most common graph mining task is finding 
frequent subgraph structures within either a large, 
single graph or a database of smaller graphs (Washio 
& Motoda, 2003).  Most methods for finding frequent 
subgraphs are based on the Apriori algorithm (Agrawal 
& Srikant, 1994) and involve four steps:  

1. Starting with a defined smallest unit, generate 
increasingly larger subgraphs.

2. Check that the generated subgraphs appear in the 
database or graph.

3. Count the number of times each subgraph ap-
pears.

4. Discard subgraphs that are less frequent than the 
user-specified minimum, or support, thus avoiding 
investigation of their supergraphs.  Also discard 
isomorphisms (subgraphs with identical vertices 
and edges).

Subgraph matching, or isomorphism testing, is 
thought to have no polynomial time algorithm for 
general graphs (Skiena, 1998).  Graph mining algo-
rithms attempt to reduce the computational load of 
this problem in many ways, all of which rely on the 
downward closure property (see step 4).  This prop-
erty states that a subgraph of a larger graph is more 
frequent than the larger graph; therefore, if a particular 
subgraph is infrequent, it is removed from the search 
space because further expansion would not yield a vi-
able candidate.  Another way to reduce search space 
is to restrict candidates to subgraphs with no common 
edges (Washio & Motoda, 2003). 

MAIN FOCUS

The most basic difference among graph mining al-
gorithms is whether the input data is a single graph 
or a database of smaller graphs.  Algorithms written 
for a single graph input can be used on a database of 
smaller graphs, but the reverse is not true (Goethels 
et al., 2005).   Most general graph  and tree mining 
algorithms are frequent subgraph methods focused on a 
database of graphs, although the single graph approach 
is more versatile.  

Within the main categories of single vs. database 
of graphs, these frequent subgraph methods are often 
very similar, and are mostly distinguished by the strate-
gies for generating candidate subgraphs and reducing 
the support computation cost, by the method of graph 
matching employed, and by the basic substructure 
unit.  Complete algorithms generate every possible 
candidate subgraph, while heuristic algorithms truncate 
the candidate generation stage.

Many of the complete methods such as AGM and 
AcGM (Inokuchi et al., 2000, 2003), FSG (Kuramochi 
& Karypis, 2004), GASTON (Nijssen & Kok, 2004) 
and algorithms proposed by Vanetik et al. (2004) and 
Inokuchi (2004) use the join method of Apriori to 
generate new candidate subgraphs.  In this method, 
two graphs of size k with identical subgraphs of size 
k-1are joined together to form a graph of size k+1.  For 
example, consider two connected graphs, each with 
k = 3 nodes.  Graph A contains nodes {B, E, and K} 
while Graph B contains nodes {C, E, and K}.  The new 
candidate graph would contain nodes {B, C, E, and K} 
and their incident edges.   

Each of these algorithms uses a different substructure 
unit (either a vertex, edge, or combination of vertex 
and edge called a leg) to generate larger subgraphs.  
All take a database of graphs as input.  GASTON is 
particularly notable because it can find frequent paths 
and free trees in addition to general subgraphs.  

Some complete algorithms use pattern extension 
instead of join operations to generate candidate sub-
graphs. In this method, the new candidate graph is 
formed by extending a vertex or edge.  Examples of 
these non-Apriori methods include gSpan (Yan et al., 
2002) and its variants, CloseGraph (Yan et al., 2003) 
LCGMiner (Xu & Lei, 2004), ADI-Mine (Wang et al., 
2004), and GraphMiner (Wang et al., 2005).  Basi-
cally, these algorithms build spanning trees for each 
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