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INTRODUCTION

Ensemble rule based classification methods have 
been popular for a while in the machine-learning lit-
erature (Hand, 1997). Given the advent of low-cost, 
high-computing power, we are curious to see how far 
can we go by repeating some basic learning process, 
obtaining a variety of possible inferences, and finally 
basing the global classification decision on some sort 
of ensemble summary. Some general benefits to this 
idea have been observed indeed, and we are gaining 
wider and deeper insights on exactly why this is the 
case in many fronts of interest. 

There are many ways to approach the ensemble-
building task. Instead of locating ensemble members 
independently, as in Bagging (Breiman, 1996), or with 
little feedback from the joint behavior of the form-
ing ensemble, as in Boosting (see, e.g., Schapire & 
Singer, 1998), members can be created at random and 
then made subject to an evolutionary process guided 
by some fitness measure. Evolutionary algorithms 
mimic the process of natural evolution and thus involve 
populations of individuals (rather than a single solution 
iteratively improved by hill climbing or otherwise). 
Hence, they are naturally linked to ensemble-learning 
methods. Based on the long-term processing of the data 
and the application of suitable evolutionary operators, 
fitness landscapes can be designed in intuitive ways to 
prime the ensemble’s desired properties. Most notably, 
beyond the intrinsic fitness measures typically used 
in pure optimization processes, fitness can also be 
endogenous, that is, it can prime the context of each 
individual as well.

BACKGROUND

A number of evolutionary mining algorithms are 
available nowadays. These algorithms may differ in 
the nature of the evolutionary process or in the basic 

models considered for the data or in other ways. For 
example, approaches based on the genetic programming 
(GP), evolutionary programming (EP), and classifier 
system (CS) paradigms have been considered, while 
predictive rules, trees, graphs, and other structures 
been have evolved. See Eiben and Smith (2003) for an 
introduction to the general GP, EP, and CS frameworks 
and Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 
(2003) for an idea of performance by GP algorithms at 
the patent level. Here I focus on ensemble –rule based 
methods for classification tasks or supervised learning 
(Hand, 1997). 

The CS architecture is naturally suitable for this sort 
of rule assembly problems, for its basic representation 
unit is the rule, or classifier (Holland, Holyoak, Nisbett, 
& Thagard, 1986). Interestingly, tentative ensembles 
in CS algorithms are constantly tested for successful 
cooperation (leading to correct predictions). The fitness 
measure seeks to reinforce those classifiers leading to 
success in each case. However interesting, the CS ap-
proach in no way exhausts the scope of evolutionary 
computation ideas for ensemble-based learning; see, 
for example, Kuncheva and Jain (2000), Liu, Yao, and 
Higuchi (2000), and Folino, Pizzuti, and Spezzano 
(2003).

Ensembles of trees or rules are the natural refer-
ence for evolutionary mining approaches. Smaller 
trees, made by rules (leaves) with just a few tests, are 
of particular interest. Stumps place a single test and 
constitute an extreme case (which is nevertheless used 
often). These rules are more general and hence tend 
to make more mistakes, yet they are also easier to 
grasp and explain. A related notion is that of support, 
the estimated probability that new data satisfy a given 
rule’s conditions. A great deal of effort has been done 
in the contemporary CS literature to discern the idea of 
adequate generality, a recurrent topic in the machine-
learning arena.
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E
MAIN THRUST

Evolutionary and Tree-Based Rule
Ensembles 

In this section, I review various methods for ensemble 
formation. As noted earlier, in this article, I use the en-
semble to build averages of rules. Instead of averaging, 
one could also select the most suitable classifier in each 
case and make the decision on the basis of that rule 
alone (Hand, Adams, & Kelly, 2001). This alternative 
idea may provide additional insights of interest, but I 
do not analyze it further here.

It is conjectured that maximizing the degree of 
interaction amongst the rules already available is 
critical for efficient learning (Kuncheva & Jain, 2000; 
Hand et al., 2001). A fundamental issue concerns then 
the extent to which tentative rules work together and 
are capable of influencing the learning of new rules. 
Conventional methods like Bagging and Boosting 
show at most moderate amounts of interaction in this 
sense. While Bagging and Boosting are useful, well-
known data-mining tools, it is appropriate to explore 
other ensemble-learning ideas as well. In this article, 
I focus mainly on the CS algorithm. CS approaches 
provide interesting architectures and introduce complex 
nonlinear processes to model prediction and reinforce-
ment. I discuss a specific CS algorithm and show how 
it opens interesting pathways for emergent cooperative 
behaviour.

Conventional Rule Assembly

In Bagging methods, different training samples are 
created by bootstraping, and the same basic learning 
procedure is applied on each bootstrapped sample. In 
Bagging trees, predictions are decided by majority 
voting or by averaging the various opinions available 
in each case. This idea is known to reduce the basic 
instability of trees (Breiman, 1996). 

A distinctive feature of the Boosting approach is 
the iterative calling to a basic weak learner (WL) al-
gorithm (Schapire & Singer, 1998). Each time the WL 
is invoked, it takes as input the training set — together 
with a dynamic (probability) weight distribution over 
the data — and returns a single tree. The output of the 
algorithm is a weighted sum itself, where the weights 
are proportional to individual performance error. The 

WL learning algorithm needs only to produce moder-
ately successful models. Thus, trees and simplified trees 
(stumps) constitute a popular choice. Several weight 
updating schemes have been proposed. Schapire and 
Singer update weights according to the success of the 
last model incorporated, whereas in their LogitBoost 
algorithm, Friedman, Hastie, and Tibshirani (2000) let 
the weights depend on overall probabilistic estimates. 
This latter idea better reflects the joint work of all 
classifiers available so far and hence should provide a 
more effective guide for the WL in general. 

The notion of abstention brings a connection with 
the CS approach that will be apparent as I discuss the 
match set idea in the followins sections. In standard 
boosting trees, each tree contributes a leaf to the over-
all prediction for any new x input data vector, so the 
number of expressing rules is the number of boosting 
rounds independently of x. In the system proposed by 
Cohen and Singer (1999), the WL essentially produces 
rules or single leaves C  (rather than whole trees). Their 
classifiers are then maps taking only two values, a real 
number for those x verifying the leaf and 0 elsewhere. 
The final boosting aggregation for x is thus unaffected 
by all abstaining rules (with x ∉ C), so the number of 
expressing rules may be a small fraction of the total 
number of rules.

The General CS-Based Evolutionary
Approach 

The general classifier system (CS) architecture invented 
by John Holland constitutes perhaps one of the most 
sophisticated classes of evolutionary computation al-
gorithms (Hollandet et al., 1986). Originally conceived 
as a model for cognitive tasks, it has been considered in 
many (simplified) forms to address a number of learning 
problems. The nowadays standard stimulus-response 
(or single-step) CS architecture provides a fascinating 
approach to the representation issue. Straightforward 
rules (classifiers) constitute the CS building blocks. CS 
algorithms maintain a population of such predictive 
rules whose conditions are hyperplanes involving the 
wild-card character #. If we generalize the idea of hyper-
plane to mean “conjunctions of conditions on predictors 
where each condition involves a single predictor,” We 
see that these rules are also used by many other learning 
algorithms. Undoubtedly, hyperplane interpretability 
is a major factor behind this popularity.
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