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INTRODUCTION

Several classes of computational and statistical methods
for data mining are available. Each class can be param-
eterised so that models within the class differ in terms
of such parameters (See for instance Giudici, 2003,
Hastie et al., 2001, Han and Kamber, 200, Hand et al,
2001 and Witten and Frank, 1999). For example the
class of linear regression models, which differ in the
number of explanatory variables; the class of bayesian
networks, which differ in the number of conditional
dependencies (links in the graph); the class of tree
models, which differ in the number of leaves and the
class multi-layer perceptrons which differ in terms of
the number of hidden strata and nodes. Once a class of
models has been established the problem is to choose
the “best” model from it.

BACKGROUND

A rigorous method to compare models is statistical
hypothesis testing. With this in mind one can adopt a
sequential procedure that allows a model to be chosen
through a sequence of pairwise test comparisons. How-
ever, we point out that these procedures are generally not
applicable, in particular to computational data mining
models, which do not necessarily have an underlying
probabilistic model and, therefore, do not allow the
application of statistical hypotheses testing theory.
Furthermore, it often happens that for a data problem
it is possible to use more than one type of model class,
with different underlying probabilistic assumptions.
For example, for a problem of predictive classification
it is possible to use both logistic regression and tree
models as well as neural networks.

We also point out that model specification and,
therefore, model choice is determined by the type of
variables used. These variables can be the result of

transformations or of the elimination of observations,
following an exploratory analysis. We then need to
compare models based on different sets of variables
present at the start. For example, how do we compare a
linear model with the original explanatory variables with
one with a set of transformed explanatory variables?

The previous considerations suggest the need for
a systematic study of the methods for comparison and
evaluation of data mining models.

MAIN THRUST OF THE CHAPTER

Comparison criteria for data mining models can be
classified schematically into: criteria based on statis-
tical tests, based on scoring functions, computational
criteria, bayesian criteria and business criteria.

Criteria Based on Statistical Tests

The firstare based on the theory of statistical hypothesis
testing and, therefore, there is a lot of detailed literature
related to thistopic. See for example a text about statisti-
cal inference, such as Mood, Graybill and Boes (1991)
and Bickel and Doksum (1977). A statistical model
can be specified by a discrete probability function or
by a probability density function, f(x). Such model is
usually left unspecified, up to unknown quantities that
have to be estimated on the basis of the data at hand.
Typically, the observed sample it is not sufficient to
reconstruct each detail of f(x), but can indeed be used
to approximate f(x) with a certain accuracy. Often a
density function is parametric so that it is defined by
a vector of parameters ©@=(0 ,...,0,), such that each
value 0 of ® corresponds to a particular density func-
tion, p,(x). In order to measure the accuracy of a para-
metric model, one can resort to the notion of distance
between a model f, which underlies the data, and an
approximating model g (see, for instance, Zucchini,
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2000). Notable examples of distance functions are,
for categorical variables: the entropic distance, which
describes the proportional reduction of the heterogene-
ity of the dependent variable; the chi-squared distance,
based on the distance from the case of independence;
the 0-1 distance, which leads to misclassification rates.
For quantitative variables, the typical choice is the Eu-
clidean distance, representing the distance between two
vectors in a Cartesian space. Another possible choice
is the uniform distance, applied when nonparametric
models are being used.

Any of the previous distances can be employed
to define the notion of discrepancy of an statistical
model. The discrepancy of'amodel, g, can be obtained
comparing the unknown probabilistic model, f, and the
best parametric statistical model. Since f'is unknown,
closeness can be measured with respect to a sample
estimate of the unknown density f. A common choice
of discrepancy function is the Kullback-Leibler diver-
gence, that can be applied to any type of observations.
In such context, the best model can be interpreted as
that with a minimal loss of information from the true
unknown distribution.

It can be shown that the statistical tests used for
model comparison are generally based on estimators
of the total Kullback-Leibler discrepancy; the most
used is the log-likelihood score. Statistical hypothesis
testing is based on subsequent pairwise comparisons of
log-likelihood scores of alternative models. Hypothesis
testing allows to derive a threshold below which the
difference between two models is not significant and,
therefore, the simpler models can be chosen.

Therefore, with statistical tests it is possible make
an accurate choice among the models. The defect of
this procedure is that it allows only a partial ordering
ofmodels, requiring acomparison between model pairs
and, therefore, with a large number of alternatives it
is necessary to make heuristic choices regarding the
comparison strategy (such as choosing among the
forward, backward and stepwise criteria, whose results
may diverge). Furthermore, a probabilistic model
must be assumed to hold, and this may not always be
possible.

Criteria Based on Scoring Functions
A less structured approach has been developed in the

field of information theory, giving rise to criteria based
on score functions. These criteria give each model a
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score, which puts them into some kind of complete
order. We have seen how the Kullback-Leibler discrep-
ancy can be used to derive statistical tests to compare
models. In many cases, however, a formal test cannot
be derived. For this reason, it is important to develop
scoring functions, that attach a score to each model.
The Kullback-Leibler discrepancy estimator is an
example of such a scoring function that, for complex
models, can be often be approximated asymptotically.
A problem with the Kullback-Leibler score is that it
depends on the complexity of a model as described,
for instance, by the number of parameters. It is thus
necessary to employ score functions that penalise
model complexity.

The most important of such functions is the AIC
(Akaike Information Criterion, Akaike, 1974). From
its definition notice that the AIC score essentially pe-
nalises the loglikelihood score with a term that increases
linearly with model complexity. The AIC criterion is
based on the implicit assumption that q remains con-
stant when the size of the sample increases. However
this assumption is not always valid and therefore the
AIC criterion does not lead to a consistent estimate of
the dimension of the unknown model. An alternative,
and consistent, scoring function is the BIC criterion
(Bayesian Information Criterion), also called SBC,
formulated by Schwarz (1978). As can be seen from
its definition the BIC differs from the AIC only in the
second part which now also depends on the sample
size n. Compared to the AIC, when n increases the BIC
favours simpler models. As n gets large, the first term
(linear inn) will dominate the second term (logarithmic
in n). This corresponds to the fact that, for a large n,
the variance term in the mean squared error expression
tends to be negligible. We also point out that, despite
the superficial similarity between the AIC and the BIC,
the first is usually justified by resorting to classical
asymptotic arguments, while the second by appealing
to the Bayesian framework.

To conclude, the scoring function criteria for se-
lecting models are easy to calculate and lead to a total
ordering of the models. From most statistical packages
we can get the AIC and BIC scores for all the models
considered. A further advantage of these criteria is that
they can be used also to compare non-nested models
and, more generally, models that do not belong to the
same class (for instance a probabilistic neural network
and a linear regression model).
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