
866

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 42

Software Language Engineering
with XMF and XModeler

ABSTRACT

XMF and XModeler are presented as technologies that have been specifically designed for Software Language
Engineering. XMF provides a meta-circular, extensible platform for DSL definition based on syntax-classes
that extend object-oriented classes with composable grammars. XModeler is a development environment
built on top of XMF that provides an extensible client-based architecture for developing DSL tools.

INTRODUCTION

Software Engineering is different from other
Engineering disciplines, such as Civil, Electrical
and Chemical. Traditional Engineering disciplines
are based on a collection of well-understood,
fixed rules that are the same for each new system.
There is a single formal system that describes the
elements of each discipline and how they work
together to build systems. A Software Engineer
is free to design a formal system for each new
application. For example, a financial application
executes in terms of elements and rules that are
different from a telecom system or a car engine
controller. Each new formal system leads to a do-
main specific language (DSL) that can represent
a family of related systems.

Conventional software development requires
that systems are implemented in a general purpose
language (GPL) such as C or Java. A language
engineering approach requires that the DSL is
embedded in a GPL. Fortunately, even a minimal
programming language has a surprising property
that allows programs to be expressed as data to be
processed and executed by another program. This
meta-ability that allows programs to be represented
as data and vice versa, both differentiates Software
Engineering from other Engineering disciplines
and makes it possible for programming languages
to process other programming languages.

The process of building languages is termed
Software Language Engineering and requires a
meta-technology that can build and process lan-
guages. A DSL can be internal if it is assimilated

Tony Clark
Middlesex University, UK

James Willans
HSBC, UK

DOI: 10.4018/978-1-4666-6042-7.ch042

867

Software Language Engineering with XMF and XModeler
﻿

as part of the host language and external if it is
stand-alone. Languages that support Language
Oriented Programming (LOP) allow DSLs to be
defined and to be integrated with the host language
execution engine (whether external or internal).
Languages for LOP offer a range of features that
can process syntax from concrete to abstract
and can embed new language structures into the
execution cycle of the host language either by
desugaring to the host language structures or by
producing data that is subsequently processed by
an interpreter written in the host language.

XMF and XModeler are tools that have been
designed for Software Language Engineering.
XMF is a programming language for LOP and
XModeler is an IDE written in XMF on Eclipse
for building XMF applications and domain spe-
cific modelling tools. XMF is bootstrapped and
XModeler is constructed by using XMF-defined
languages to control a small number of tool primi-
tives for graphics, tree-browsing, property editing,
menus and text editors.

XMF is bootstrapped using a self-describing
meta-model that supports an arbitrary number
of meta-class instances. The XMF meta-model
includes higher-order functions (closures) that are
extensively used to process syntax structures and
provides a basic language based on an extension
of the Object Constraint Language (OCL) that
conveniently supports a range of list processing
operations. The basic language provided by XMF
can be changed by replacing the default grammar.
Finally, the meta-model for XMF allows classes to
be associated with extensible grammars to form
syntax-classes.

A syntax-class defines how to transform de-
limited text (concrete syntax) into abstract syntax
that is subsequently processed by the XMF execu-
tion engine. Once defined, a syntax-class can be
used in any XMF program. It can be embedded
as an internal language construct in expressions
or included via an external file. Unlike many
systems, grammars can refer to each other and

new language constructs can refer to the host
language thereby allowing the new construct to
be interleaved with the host.

XMF and XModeler were developed as com-
mercial products and successfully used on a range
of customer projects including those for BAES,
Citi-Group, Artisan Software and BT (Georgalas
et al., 2004, 2005). They are both open-source1 and
form the basis of language engineering examples
described in the widely cited e-books (Clark et al.,
2008). These tools were independently evaluated
(Helsen Ryman & Spinelli, 2008) as providing the
highest-level of support for systems abstraction
compared to other tools for software engineering
and is regularly included in comparative studies
of language engineering tools.

XMF and XModeler provide key technical
solutions when implementing languages for SLE
and LOP. XMF has been the basis for a number of
DSL developments (Clark & Tratt, 2010; Clark &
Tratt, 2009; Clark et al., 2008; Clark et al., 2004;
Petrascu & Chiorean, 2010). The key contribution
that these technologies make to DSL development
is to apply a uniform, reflective approach to lan-
guage engineering. The meta-level architecture
of XMF is completely open and extensible, and
data at all levels (values, types, syntax, meta-
types, operations) is represented using a simple
single meta-circular representation. This leads to
a uniquely uniform software language engineer-
ing technology that is described in this chapter.

SOFTWARE LANGUAGE
ENGINEERING WITH XMF

Our proposition is that Software Engineering is
predominantly a Language Engineering based dis-
cipline. The definition of any new system involves
the comprehension of several domains, including
the problem and solution domains, and the ability
to control one or more technology platforms so that
they support a collection of desired computations.

29 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-language-engineering-with-xmf-and-

xmodeler/108755

Related Content

Statistical Relational Learning for Collaborative Filtering a State-of-the-Art Review
Lediona Nishaniand Marenglen Biba (2020). Natural Language Processing: Concepts, Methodologies,

Tools, and Applications (pp. 688-707).

www.irma-international.org/chapter/statistical-relational-learning-for-collaborative-filtering-a-state-of-the-art-

review/239960

Digital Narratives and the Genealogy of a Hybrid Genre
Otilia Pacea (2014). Computational Linguistics: Concepts, Methodologies, Tools, and Applications (pp.

1001-1017).

www.irma-international.org/chapter/digital-narratives-and-the-genealogy-of-a-hybrid-genre/108762

Design Patterns and Design Principles for Internal Domain-Specific Languages
Sebastian Günther (2014). Computational Linguistics: Concepts, Methodologies, Tools, and Applications

(pp. 352-410).

www.irma-international.org/chapter/design-patterns-and-design-principles-for-internal-domain-specific-languages/108729

Representing Music as Work in Progress
Gerard Romaand Perfecto Herrera (2014). Computational Linguistics: Concepts, Methodologies, Tools,

and Applications (pp. 1195-1210).

www.irma-international.org/chapter/representing-music-as-work-in-progress/108771

Transnational Preservice Teachers' Literate Lives and Writing Pedagogy in a Digital Era
Minda Morren Lópezand Carol Brochin (2014). Computational Linguistics: Concepts, Methodologies, Tools,

and Applications (pp. 1282-1299).

www.irma-international.org/chapter/transnational-preservice-teachers-literate-lives-and-writing-pedagogy-in-a-digital-

era/108777

http://www.igi-global.com/chapter/software-language-engineering-with-xmf-and-xmodeler/108755
http://www.igi-global.com/chapter/software-language-engineering-with-xmf-and-xmodeler/108755
http://www.irma-international.org/chapter/statistical-relational-learning-for-collaborative-filtering-a-state-of-the-art-review/239960
http://www.irma-international.org/chapter/statistical-relational-learning-for-collaborative-filtering-a-state-of-the-art-review/239960
http://www.irma-international.org/chapter/digital-narratives-and-the-genealogy-of-a-hybrid-genre/108762
http://www.irma-international.org/chapter/design-patterns-and-design-principles-for-internal-domain-specific-languages/108729
http://www.irma-international.org/chapter/representing-music-as-work-in-progress/108771
http://www.irma-international.org/chapter/transnational-preservice-teachers-literate-lives-and-writing-pedagogy-in-a-digital-era/108777
http://www.irma-international.org/chapter/transnational-preservice-teachers-literate-lives-and-writing-pedagogy-in-a-digital-era/108777

