
228

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

Demystifying Domain
Specific Languages

ABSTRACT

Domain Specific Languages (DSLs) provide interesting characteristics that align well with the goals
and mission of model-driven software engineering. However, there are still some issues that hamper
widespread adoption. In this chapter, the authors discuss two of these issues. The first relates to the
vagueness of the term DSL, which they address by studying the individual terms: domain, specificity,
and language. The second is related to the difficulty of developing DSLs, which they address with a view
to making DSL development more accessible via processes, standards, and tools.

INTRODUCTION

The concept of Domain Specific Languages
(DSLs) is not new, and the advantages to using
them have long been highlighted in the literature:

We must develop languages that the scientist, the
architect, the teacher, and the layman can use
without being computer experts. The language for
each user must be as natural as possible to her/
him. The statistician must talk to his terminal in
the language of statistics. The civil engineer must
use the language of civil engineering. When a man
learns his profession he must learn the problem-
oriented languages to go with that profession
(Martin, 1967, p. 89).

We must constantly turn to new languages in
order to express our ideas more effectively. Es-
tablishing new languages is a powerful strategy
for controlling complexity in engineering design;
we can often enhance our ability to deal with a
complex problem by adopting a new language that
enables us to describe (and hence to think about)
the problem in a different way, using primitives,
means of combination, and means of abstraction
that are particularly well suited to the problem
at hand (Abelson, Sussman, & Sussman, 1996,
pp. 359-360).

The use of DSLs is not limited to information
technology, as they are used in many other areas
as well, such as finance (Arnold, Van Deursen, &

Abdelilah Kahlaoui
École de Technologie Supérieure, Canada

Alain Abran
École de Technologie Supérieure, Canada

DOI: 10.4018/978-1-4666-6042-7.ch012

229

Demystifying Domain Specific Languages

Res, 1995), chemistry (Murray-Rust, 1997), biol-
ogy (Hucka et al., 2003), music (Boulanger, 2000),
for example. Among the DSLs most commonly
used in computer science today are the Structured
Query Language (SQL) (Chamberlin & Boyce,
1974; ISO, 2008), the regular expression language
for manipulating strings (Friedl, 2006), Microsoft
Office Excel (Microsoft, 2011), and the eXtensible
Markup Language (XML) (ISO, 1986).

A DSL is usually designed to solve a specific
class of problems in a particular domain. The
focus of DSLs on a particular domain facilitates
the creation of languages that best represent the
domain concepts. This convergence between
problem domain and solution domain has many
benefits, in terms of the expressiveness and
precision (semantics) of the DSL. In addition,
DSLs have also shown good potential in terms of
productivity, reusability, and reliability (Kelly &
Tolvanen, 2008; Kleppe, 2008).

In this chapter, we discuss the concept of DSLs
(section 1), and present the types of DSLs (section
2) and the tools used to develop them (section 3).
Section 4 presents some of the standards that can
be used as a foundation for developing DSLs. Sec-
tion 5 describes the development process itself.
Finally, we summarize this work in section 6.

BACKGROUND

As mentioned earlier, DSLs have been a part of the
computing world for decades. SQL and the UNIX
languages awk and make are a few examples. These
languages were developed by specialists with solid
language development skills and good knowledge
of the DSL domain. However, the emergence of the
model driven approach and the need for languages
capable of producing precise models that can be
processed by machines, has opened up new horizons
for DSLs. In the future, these languages could play
a central role in the software development cycle,
which would take DSLs from the arena of special-
ists to that of software developers.

However, software developers generally do
not have the skills required to develop DSLs, and
so an effort must be made to make DSL develop-
ment more accessible. Only two areas have been
addressed up to now to achieve this: DSL tooling,
and DSL development. On the one hand, tooling
has been driven by the likes of IBM, Microsoft,
and Metacase (see section 3 for further details
about DSL tools). These companies offer tools
designed to support most of the activities of the
DSL development cycle. Unfortunately, these tools
remain immature. On the other hand, there has been
significant progress on individual aspects of DSL
development. For example, (Mernik, Heering, &
Sloane, 2005) have identified a set of patterns for
the decision, analysis, design, and implementation
phases of DSL development; (Tolvanen, 2006)
provides guidelines and steps on how to create
a DSL; (Deursen, Klint, & Visser, 2000) discuss
DSL design methodology and provide a list of
related publications, and (Thibault, Marlet, &
Consel, 1999) propose a framework for designing
and implementing DSLs.

Although this work helps demystify DSL
development, it does not describe a well defined
DSL development process that covers all its major
aspects, namely: what process to follow, what
products to use, what tools are required, and who
is involved. So far, the research effort has mainly
focused on DSL development phases and activities.
For (Deursen, et al., 2000), a DSL development
process comprises three phases: analysis, imple-
mentation, and use, while (Mernik, et al., 2005)
identify five phases: decision, analysis, design,
implementation, and deployment.

To improve the DSL development experience,
three areas need to be considered:

1. Processes to provide a disciplined approach
to DSL development;

2. Tools to support language development and
maintenance; and

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/demystifying-domain-specific-languages/108723

Related Content

A Combined Grammatical and Syntactical Method
 (2020). Grammatical and Syntactical Approaches in Architecture: Emerging Research and Opportunities

(pp. 186-214).

www.irma-international.org/chapter/a-combined-grammatical-and-syntactical-method/245864

Sentiment Classification: Facebook' Statuses Mining in the “Arabic Spring” Era
Jalel Akaichi (2015). Modern Computational Models of Semantic Discovery in Natural Language (pp. 1-26).

www.irma-international.org/chapter/sentiment-classification/133873

Hidden Markov Model Based Visemes Recognition, Part II: Discriminative Approaches
Say Wei Fooand Liang Donga (2009). Visual Speech Recognition: Lip Segmentation and Mapping (pp.

356-387).

www.irma-international.org/chapter/hidden-markov-model-based-visemes/31074

An Imagination of Organizations in the Future: Rethinking McKinsey's 7S Model
Oya Zincirand Ayegül Özbebek Tunç (2020). Natural Language Processing: Concepts, Methodologies,

Tools, and Applications (pp. 1667-1685).

www.irma-international.org/chapter/an-imagination-of-organizations-in-the-future/240008

A Formal Semantics of Kermeta
Moussa Amrani (2014). Computational Linguistics: Concepts, Methodologies, Tools, and Applications (pp.

1043-1082).

www.irma-international.org/chapter/a-formal-semantics-of-kermeta/108764

http://www.igi-global.com/chapter/demystifying-domain-specific-languages/108723
http://www.irma-international.org/chapter/a-combined-grammatical-and-syntactical-method/245864
http://www.irma-international.org/chapter/sentiment-classification/133873
http://www.irma-international.org/chapter/hidden-markov-model-based-visemes/31074
http://www.irma-international.org/chapter/an-imagination-of-organizations-in-the-future/240008
http://www.irma-international.org/chapter/a-formal-semantics-of-kermeta/108764

