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INTRODUCTION

A lot of interest has been expressed in database mining 
using association rules (Agrawal, Imielinski, & Swami, 
1993). In this chapter, we provide a different view of the 
association rules, referred to as cubegrades (Imielinski, 
Khachiyan,  & Abdulghani, 2002) .

An example of a typical association rule states 
that, say, 23% of supermarket transactions (so called 
market basket data) which buy bread and butter buy 
also cereal (that percentage is called confidence) and 
that 10% of all transactions buy bread and butter (this 
is called support). Bread and butter represent the body 
of the rule and cereal constitutes the consequent of the 
rule. This statement is typically represented as a proba-
bilistic rule. But association rules can also be viewed 
as statements about how the cell representing the body 
of the rule is affected by specializing it by adding an 
extra constraint expressed by the rule’s consequent. 
Indeed, the confidence of an association rule can be 
viewed as the ratio of the support drop, when the cell 
corresponding to the body of a rule (in our case the cell 
of transactions buying bread and butter) is augmented 
with its consequent (in this case cereal). This inter-
pretation gives association rules a “dynamic flavor” 
reflected in a hypothetical change of support affected 
by specializing the body cell to a cell whose descrip-
tion is a union of body and consequent descriptors. For 
example, our earlier association rule can be interpreted 
as saying that the count of transactions buying bread 
and butter drops to 23% of the original when restricted 
(rolled down) to the transactions buying bread, butter 
and cereal. In other words, this rule states how the 
count of transactions supporting buyers of bread and 
butter is affected by buying cereal as well.

With such interpretation in mind, a much more 
general view of association rules can be taken, when 
support (count) can be replaced by an arbitrary measure 
or aggregate and the specialization operation can be 
substituted with a different “delta” operation. Cube-
grades capture this generalization. Conceptually, this is 
very similar to the notion of gradients used in calculus. 

By definition the gradient of a function between the 
domain points x1 and x2 measures the ratio of the delta 
change in the function value over the delta change 
between the points. For a given point x and function 
f(), it can be interpreted as a statement of how a change 
in the value of x (∆x), affects a change of value in the 
function (∆ f(x)).  

From another viewpoint, cubegrades can also be 
considered as defining a primitive for data cubes. Con-
sider a 3-D cube model shown in Figure 1 representing 
sales data. It has three dimensions year, product and 
location. The measurement of interest is total sales.  In 
olap terminology, since this cube models the base data, 
it forms a 3-D base cuboid.  A cuboid  in general is a 
group-by of a subset of dimensions of the base data, 
obtained by aggregating all tuples on these dimensions. 
So, for example for our sales data we have three 2-d 
cuboids namely (year, product), (product, location) and 
(year, location), three 1-d cuboids (year), (location) 
and (product) and one 0-d cuboid in which aggrega-
tion is performed on the whole data. For base data, 
with n diemensions, the union of  of all k-dimensional 
(k<=n) cuboids forms an n-dimensional data cube. A 
cell represents an association of a measure m (e.g., total 
sales) with a member of every dimension in a cuboid 
e.g. C1( product=“toys”, location=“NJ”, year=“2004”). 
The dimensions not present in the cell are aggregated 
over all possible members. For example, you can have 
a two-dimensional (2-D) cell, C2(product=“toys”, 
year=“2004”). Here, the implicit value for the dimen-
sion location is ‘*’, and the measure m (e.g., total sales) 
is aggregated over all locations. Any of the standard 
aggregate functions such as count, total, average, 
minimum, or maximum can be used for aggregating.  
Suppose the sales for toys in 2004 for NJ, NY, PA 
were $2.5M, $3.5M, $1.5M respectively and that the 
aggregating function is total. Then, the measure value 
for cell C2 is $7.5M.

The  scope of interest in OLAP is to evaluate 
one or more measure values of the cells in the cube. 
Cubegrades allow a broader, more dynamic view. In 
addition to evaluating the measure values in a cell, 
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they evaluate how the measure values change or are 
affected in response to a change in the dimensions of 
a cell. Traditionally, OLAP have had operators such as 
drill downs, rollups defined, but the cubegrade opera-
tor differs from them as it returns a value measuring 
the effect of the operation. There have been additional 
operators proposed to evaluate/measure cell interesting-
ness (Sarawagi, 2000; Sarawagi, Agrawal, & Megiddo, 
1998). For example, Sarawagi et al., (1998) computes 

anticipated value for a cell using the neighborhood 
values, and a cell is considered an exception if its value 
is significantly different from its anticipated value. The 
difference is that cubegrades perform a direct cell to 
cell comparison.
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Figure 1. A 3-D base cuboid with an example 3-D cell.
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Figure 2. An example 2-D cuboid on (product, year) for the 3-D cube in Figure 1 (location=’*’); total sales 
needs to be aggregated (e.g., SUM)
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