
434

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 19

An Improved Model-Based
Technique for Generating

Test Scenarios from
UML Class Diagrams

ABSTRACT

The foundation of any software testing process is test scenario generation. This is because it forecasts
the expected output of a system under development by extracting the artifacts expressed in any of the
Unified Modeling Language (UML) diagrams, which are eventually used as the basis for software testing.
Class diagrams are UML structural diagrams that describe a system by displaying its classes, attributes,
and the relationships between them. Existing class diagram-based test scenario generation techniques
only extract data variables and functions, which leads to incomprehensible or vague test scenarios.
Consequently, this chapter aims to develop an improved technique that automatically generates test
scenarios by reading, extracting, and interpreting the sets of objects that share attributes, operations,
relationships, and semantics in a class diagram. From the performance evaluation, the proposed model-
based technique is efficiently able to read, interpret, and generate scenarios from all the descriptive links
of a class diagram.

INTRODUCTION

Model-based testing (MBT) is an approach used
to assess the quality of software systems based
on modeled requirements as captured during the
requirements engineering phase of the system

development life cycle processes (Prasanna &
Chandran, 2009). MBT technique utilizes mod-
eling tools used in representing stakeholder’s
requirements to extract artifacts and generate test
scenarios (Machado & Sampaio, 2010). These
modeling tools can be Unified Modeling Language

Oluwatolani Oluwagbemi
Universiti Teknologi Malaysia, Malaysia

Hishammuddin Asmuni
Universiti Teknologi Malaysia, Malaysia

DOI: 10.4018/978-1-4666-6026-7.ch019

435

An Improved Model-Based Technique for Generating Test Scenarios

(UML), ArgoUML, Magic Draw or UML Rational
Rose among others. Model-based software test-
ing has to do with the creation of test cases from
abstract software models which are eventually used
to conduct software conformance testing (Sawant
& Shah, 2011). Figure 1 depicts the processes
involved in model-based software testing.

MBT consists of three basic flows of procedural
events described as follows: (i) the modeling tool
used in representing stakeholder’s requirements
(ii) the parser required to extract artifacts from the
modeling diagram and (iii) a test case generation
algorithm. From literature, most of the techniques
for generating test cases in model-based software
testing dwell on sequence, activity, state chart, and
collaboration diagrams. Class diagram-based test
scenario generation techniques are few. The reason
may be due to the complexities associated with
extracting all the attributes, classes, associations,
generalizations, aggregations and compositions in
class diagrams so as to generate comprehensive
scenarios.

The major activities that take place during
model-based testing as shown in Figure 1 are
described below:

1. Model Development: This phase has to do
with the construction of a UML-based dia-
gram that reflects the specified or prioritized
requirements using any of the modeling tools.
The aim of this phase is to generate a test en-
abled model that will contain unambiguous
artifacts required to generate test scenarios.
In this research, the proposed technique was
validated using ArgoUML tool because it is
open source.

2. Parser: Once the modeled diagram is com-
pleted, the next task is to save it. UML stores
its diagram in an .MDL file extension while
ArgoUML stores its diagram in XMI file
extensions for example. Therefore, a funda-
mental task in model-based software testing
is the implementation of a parser that has a
robust capacity of extracting artifacts from
the file extensions of the relevant modeling
tool. In this research, a parser was developed
and implemented using Java programming
language.

3. Test Scenarios Generation: These are de-
rived from the parsed artifacts. The parsed
artifacts are executed to generate and display
test scenarios.

MBT enables testing processes to commence as
soon as the requirement specifications and design
documents are ready. It also reduces testing time
since the testing and development processes can
occur concurrently. Therefore, each output of a
coding exercise can be compared to the generated
test scenarios in order to determine whether the
system under development is behaving as expected
or not. With MBT, software systems are hardly
rejected by stakeholders because each output of
the development life cycle can be compared to the
generated test scenarios to ensure conformance.

Figure 1. Model-based software testing process

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/an-improved-model-based-technique-for-

generating-test-scenarios-from-uml-class-diagrams/108629

Related Content

Software Release Planning Using Grey Wolf Optimizer
Vibha Verma, Neha Nehaand Anu G. Aggarwal (2022). Research Anthology on Agile Software, Software

Development, and Testing (pp. 508-541).

www.irma-international.org/chapter/software-release-planning-using-grey-wolf-optimizer/294481

An Efficient and Congestion Aware Fuzzy Based Output Selection Strategy for On-Chip Routers
Ashima Aroraand Neeraj Kr. Shukla (2017). International Journal of Information System Modeling and

Design (pp. 57-69).

www.irma-international.org/article/an-efficient-and-congestion-aware-fuzzy-based-output-selection-strategy-for-on-chip-

routers/199003

Predicting Dogecoin Price Using Python Programming and AutoTS Algorithm
Albana Zejnullahi (2023). The Software Principles of Design for Data Modeling (pp. 211-225).

www.irma-international.org/chapter/predicting-dogecoin-price-using-python-programming-and-autots-algorithm/330498

Adaptive Virtual Machine Management in the Cloud: A Performance-Counter-Driven Approach
Gildo Torresand Chen Liu (2014). International Journal of Systems and Service-Oriented Engineering (pp.

28-43).

www.irma-international.org/article/adaptive-virtual-machine-management-in-the-cloud/114605

Implementing Internal Software Process Assessment: An Experience at a Mid-Size IT Company
Shukor Sanim Mohd Fauzi, Nuraminah Ramliand Mustafa Kamal Mohd Nor (2014). Software Design and

Development: Concepts, Methodologies, Tools, and Applications (pp. 1314-1334).

www.irma-international.org/chapter/implementing-internal-software-process-assessment/77759

http://www.igi-global.com/chapter/an-improved-model-based-technique-for-generating-test-scenarios-from-uml-class-diagrams/108629
http://www.igi-global.com/chapter/an-improved-model-based-technique-for-generating-test-scenarios-from-uml-class-diagrams/108629
http://www.irma-international.org/chapter/software-release-planning-using-grey-wolf-optimizer/294481
http://www.irma-international.org/article/an-efficient-and-congestion-aware-fuzzy-based-output-selection-strategy-for-on-chip-routers/199003
http://www.irma-international.org/article/an-efficient-and-congestion-aware-fuzzy-based-output-selection-strategy-for-on-chip-routers/199003
http://www.irma-international.org/chapter/predicting-dogecoin-price-using-python-programming-and-autots-algorithm/330498
http://www.irma-international.org/article/adaptive-virtual-machine-management-in-the-cloud/114605
http://www.irma-international.org/chapter/implementing-internal-software-process-assessment/77759

