
309

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  14

DOI: 10.4018/978-1-4666-6026-7.ch014

Agile Development Processes 
and Knowledge Documentation

ABSTRACT

Agile processes emphasize operational system code rather than its documentation. Ironically, however, 
some traditional documentation artefacts come to support system-stakeholders interaction, which is 
another core aspect of agile development processes. In this chapter, the authors examine the relationship 
between system development and knowledge documentation. They develop an approach that enables 
incorporating domain documentation to agile development while keeping the processes adaptive. The 
authors also provide a system design that actively uses domain knowledge documentation.

INTRODUCTION

Agile development processes come to enable a 
more flexible and adaptive system development 
process than the traditional development processes 
do (Maurer & Hellmann 2013, Fowler 2005).

Agile methods require less documentation 
for tasks, and promote implementation based on 
informal collaborations between system stake-
holders (Fowler 2005). While traditional software 
engineering methods emphasize careful planning 
and design, agile methods emphasize the actual 
software implementation.

However, this shift of emphasis is not without 
cost. Documentation which is lost under agile 

development processes could have helped, among 
other things, to facilitate knowledge sharing and 
reduce knowledge loss when team members 
become unavailable (Abrahamsson et al. 2003). 
Indeed compromising on documentation is not a 
key point, but rather a consequence of the agile 
objective of being adaptive (Paetch et al. 2003), 
which agile methods attempt to overcome by 
significantly relying on constant collaboration 
between developers and users (Abrahamsson et al. 
2003). While such approaches may well lead to the 
release of a system that fits customer needs, the 
knowledge extracted under such approaches will 
be hard to access after development is complete.

Eran Rubin
Holon Institute of Technology, Israel

Hillel Rubin
Israel Institute of Technology (Technion), Israel



310

Agile Development Processes and Knowledge Documentation
﻿

The premise of this chapter is that it should 
be possible to support documentation in agile 
development methods without compromising the 
agile manifesto. If documentation is adaptive, and 
if the documentation supports people collaboration 
rather than replacing it, then documentation can 
be well aligned with agile development principles.

In this work we discuss the kind of documenta-
tion that can support collaboration and the way 
to integrate such documentation in agile develop-
ment. Namely, we propose a way of creating an 
adaptive system for documenting the knowledge 
necessary for the interaction and collaboration 
between system stakeholders.

Our approach provides agile documentation 
of domain knowledge gathered during systems 
analysis in traditional processes. Specifically, 
we provide an approach to document in agile 
processes the type of knowledge, which under 
traditional processes would have typically been 
documented during systems analysis. We aim to 
document this type of knowledge as the tradi-
tional system analysis stage is the stage in which 
all system stakeholders interact and a common 
understanding of the domain is established and 
documented. Therefore, in the traditional system 
analysis phase we are able to find documents sup-
porting collaboration, which are missing in agile 
development processes. Although such documents 
are missing in agile processes, they have great 
potential to facilitate these processes’ effective-
ness. For example, Daneva et al (2013) point out 
that understanding requirements dependencies and 
vendor’s domain knowledge is a key asset for set-
ting up successful client-developer collaboration 
in agile methodologies.

Accordingly, we identify a set of collaboration 
supporting documents of the traditional develop-
ment processes, and we establish a method to 
incorporate such documents in agile processes. 
Namely, since agile development emphasizes the 
reference to working system code, we develop a 
way of having the identified documentation as part 
of the executable system code. More specifically, 

we suggest a system architectural design which 
enables adaptable documentation as part of the 
source code. We term our proposed system design 
Active Documentation Software Design (ADSD). 
Under this design, source code execution incorpo-
rates the execution of documentation statements, 
which in turn drive the processing of the system. 
Stated differently, with ADSD changes in the 
documentation change executable code and vice 
versa, changes in source code change the relevant 
documentation.

This chapter is developed as follows:

•	 The background describes the motivation 
for this work.

•	 The section “supporting agile documenta-
tion” elaborates on principles guiding the 
development of the architecture.

•	 The section “representation of domain 
knowledge in the system code” describes 
the architecture and the implementation of 
components for its support.

•	 The section “the ADSA system design” 
provides a description of experience in us-
ing and applying the architecture.

•	 Finally, come discussion and summary of 
the manuscript.

BACKGROUND

Traditionally, the design process gradually moves 
from the “problem space” to the “solution space” 
(Booch 1987). However, as different paradigms 
of programming emerged, the difference between 
the problem and solution domain became less and 
less distinct (Henderson-Sellers & Edwards 1990). 
Initially, programs did not exhibit problem level 
information that could be understood or modi-
fied. The programmer was not required to make 
a program understandable and modifiable, but 
rather programs were merely measured by their ef-
ficiency and whether they could accurately solve a 
specific problem. Presently, software engineering 



 

 

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/agile-development-processes-and-knowledge-

documentation/108623

Related Content

Multithreading MAS Platform for Real-Time Scheduling
Yaroslav Shepilov, Daria Pavlovaand Daria Kazanskaia (2016). International Journal of Software

Innovation (pp. 48-60).

www.irma-international.org/article/multithreading-mas-platform-for-real-time-scheduling/144141

Wavelet Transforms and Multirate Filtering
Raghuveer Rao (2002). Multirate Systems: Design and Applications  (pp. 86-104).

www.irma-international.org/chapter/wavelet-transforms-multirate-filtering/27224

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance
James Jiang, Gary Klein, Phil Beckand Eric T.G. Wang (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications  (pp. 2247-2261).

www.irma-international.org/chapter/lack-skill-risks-organizational-technology/29504

Assimilating and Optimizing Software Assurance in the SDLC: A Framework and Step-Wise

Approach
Aderemi O. Adenijiand Seok-Won Lee (2012). Security-Aware Systems Applications and Software

Development Methods (pp. 16-34).

www.irma-international.org/chapter/assimilating-optimizing-software-assurance-sdlc/65840

Deep Learning-Based Tomato's Ripe and Unripe Classification System
Prasenjit Das, Jay Kant Pratap Singh Yadavand Laxman Singh (2022). International Journal of Software

Innovation (pp. 1-20).

www.irma-international.org/article/deep-learning-based-tomatos-ripe-and-unripe-classification-system/292023

http://www.igi-global.com/chapter/agile-development-processes-and-knowledge-documentation/108623
http://www.igi-global.com/chapter/agile-development-processes-and-knowledge-documentation/108623
http://www.irma-international.org/article/multithreading-mas-platform-for-real-time-scheduling/144141
http://www.irma-international.org/chapter/wavelet-transforms-multirate-filtering/27224
http://www.irma-international.org/chapter/lack-skill-risks-organizational-technology/29504
http://www.irma-international.org/chapter/assimilating-optimizing-software-assurance-sdlc/65840
http://www.irma-international.org/article/deep-learning-based-tomatos-ripe-and-unripe-classification-system/292023

