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INTRODUCTION

Spacecrafts orbiting a selected suite of planets and 
moons of our solar system are continuously sending 
long sequences of data back to Earth. The availability 
of such data provides an opportunity to invoke tools 
from machine learning and pattern recognition to extract 
patterns that can help to understand geological processes 
shaping planetary surfaces. Due to the marked interest 
of the scientific community on this particular planet, we 
base our current discussion on Mars, where there are 
presently three spacecrafts in orbit (e.g., NASA’s Mars 
Odyssey Orbiter, Mars Reconnaissance Orbiter, ESA’s 
Mars Express). Despite the abundance of available 
data describing Martian surface, only a small fraction 
of the data is being analyzed in detail because current 
techniques for data analysis of planetary surfaces rely 
on a simple visual inspection and descriptive charac-
terization of surface landforms (Wilhelms, 1990). 

The demand for automated analysis of Mars surface 
has prompted the use of machine learning and pattern 
recognition tools to generate geomorphic maps, which 
are thematic maps of landforms (or topographical ex-
pressions). Examples of landforms are craters, valley 
networks, hills, basins, etc. Machine learning can play 
a vital role in automating the process of geomorphic 
mapping. A learning system can be employed to either 
fully automate the process of discovering meaningful 
landform classes using clustering techniques; or it 
can be used instead to predict the class of unlabeled 
landforms (after an expert has manually labeled a 
representative sample of the landforms) using clas-
sification techniques. The impact of these techniques 
on the analysis of Mars topography can be of immense 
value due to the sheer size of the Martian surface that 
remains unmapped. 

While it is now clear that machine learning can 
greatly help in automating the detailed analysis of 

Mars’ surface (Stepinski et al., 2007; Stepinski et al., 
2006; Bue and Stepinski, 2006; Stepinski and Vilalta, 
2005), an interesting problem, however, arises when 
an automated data analysis has produced a novel clas-
sification of a specific site’s landforms. The problem 
lies on the interpretation of this new classification as 
compared to traditionally derived classifications gener-
ated through visual inspection by domain experts. Is 
the new classification novel in all senses? Is the new 
classification only partially novel, with many land-
forms matching existing classifications? This article 
discusses how to assess the value of clusters generated 
by machine learning tools as applied to the analysis of 
Mars’ surface. 

BACKGROUND ON CLUSTER 
VALIDATIOn

We narrow our discussion to patterns in the form of 
clusters as produced by a clustering algorithm (a form 
of unsupervised learning). The goal of a clustering 
algorithm is to partition the data such that the average 
distance between objects in the same cluster (i.e., the 
average intra-distance) is significantly less than the 
distance between objects in different clusters (i.e., the 
average inter-distance). The goal is to discover how data 
objects gather into natural groups (Duda at el., 2001; 
Bishop, 2006). The application of clustering algorithms 
can be followed by a post-processing step, also known 
as cluster validation; this step is commonly employed to 
assess the quality and meaning of the resulting clusters 
(Theodoridis and Koutroumbas, 2003).

Cluster validation plays a key role in assessing the 
value of the output of a clustering algorithm by com-
puting statistics over the clustering structure. Cluster 
validation is called internal when statistics are devised 
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to capture the quality of the induced clusters using the 
available data objects only (Krishnapuran et al., 1995; 
Theodoridis and Koutroumbas, 2003). As an example, 
one can measure the quality of the resulting clusters by 
assessing the degree of compactness of the clusters, or 
the degree of separation between clusters. 

On the other hand, if the validation is performed 
by gathering statistics comparing the induced clusters 
against an external and independent classification of 
objects, the validation is called external. In the context 
of planetary science, for example, a collection of sites 
on a planet constitutes a set of objects that are classified 
manually by domain experts (geologists) on the basis 
of their geological properties. In the case of planet 
Mars, the resultant division of sites into the so-called 
geological units represents an external classification. 
A clustering algorithm that is invoked to group sites 
into different clusters can be compared to the existing 
set of geological units to determine the novelty of the 
resulting clusters.

Current approaches to external cluster validation 
are based on the assumption that an understanding of 
the output of the clustering algorithm can be achieved 
by finding a resemblance of the clusters with existing 
classes (Dom, 2001). Such narrow assumption pre-
cludes alternative interpretations; in some scenarios 
high-quality clusters are considered novel if they do not 
resemble existing classes. After all, a large separation 
between clusters and classes can serve as clear evidence 
of cluster novelty (Cheeseman and Stutz, 1996); on the 
other hand, finding clusters resembling existing classes 
serves to confirm existing theories of data distributions. 
Both types of interpretations are legitimate; the value 
of new clusters is ultimately decided by domain experts 
after careful interpretation of the distribution of new 
clusters and existing classes.

In summary, most traditional metrics for external 
cluster validation output a single value indicating the 
degree of match between the partition induced by the 
known classes and the one induced by the clusters. We 
claim this is the wrong approach to validate patterns 
output by a data-analysis technique. By averaging 
the degree of match across all classes and clusters, 
traditional metrics fail to identify the potential value 
of individual clusters. 

CLUSTER VALIDATIOn In MACHInE 
LEARNING 

The question of how to validate clusters appropriately 
without running the risk of missing crucial information 
can be answered by avoiding any form of averaging or 
smoothing approach; one should refrain from comput-
ing an average of the degree of cluster similarity with 
respect to external classes. Instead, we claim, one should 
compute the distance between each individual cluster 
and its most similar external class; such comparison 
can then be used by the domain expert for an informed 
cluster-quality assessment. 

Traditional Approaches to Cluster 
Validation

More formally, the problem of assessing the degree 
of match between the set C of predefined classes and 
the set K of new clusters is traditionally performed by 
evaluating a metric where high values indicate a high 
similarity between classes and clusters. For example, 
one type of statistical metric is defined in terms of a 
2x2 table where each entry Eij, i,j ∈ {1,2}, counts the 
number of object pairs that agree or disagree with the 
class and cluster to which they belong; E11 corresponds 
to the number of object pairs that belong to the same 
class and cluster,  E12 corresponds to same class and 
different cluster, E21 corresponds to different class and 
same cluster, and E22  corresponds to different class and 
different cluster. Entries along the diagonal denote the 
number of object pairs contributing to high similar-
ity between classes and clusters, whereas elements 
outside the diagonal contribute to a high degree of 
dissimilarity. A common family of statistics used as 
metrics simply average correctly classified class-clus-
ter pairs by a function of all possible pairs. A popular 
similarity metric is Rand’s metric (Theodoridis and 
Koutroumbas, 2003):  

(E11 + E22) / (E11 + E12 + E21 + E22)
Other metrics are defined as follows:
Jaccard:
E11  / (E11 + E12 + E21)
Fowlkes and Mallows:
E11 / [(E11 + E12) (E21 + E22)]
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