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INTRODUCTION

One data mining activity is cluster analysis, which 
consists of segregating study units into relatively 
homogeneous groups. There are several types of 
cluster analysis; one type deserving special attention 
is clustering that arises due to a mixture of curves. A 
mixture distribution is a combination of two or more 
distributions. For example, a bimodal distribution could 
be a mix with 30% of the values generated from one 
unimodal distribution and 70% of the values generated 
from a second unimodal distribution. 

The special type of mixture we consider here is a 
mixture of curves in a two-dimensional scatter plot.  
Imagine a collection of hundreds or thousands of scatter 
plots, each containing a few hundred points including 
background noise but also containing from zero to four 
or five bands of points, each having a curved shape. In 
one application (Burr et al. 2001), each curved band of 
points was a potential thunderstorm event (see Figure 
1) as observed from a distant satellite and the goal was 
to cluster the points into groups associated with thun-
derstorm events. Each curve has its own shape, length, 
and location, with varying degrees of curve overlap, 
point density, and noise magnitude. The scatter plots 
of points from curves having small noise resemble a 
smooth curve with very little vertical variation from the 
curve, but there can be a wide range in noise magnitude 
so that some events have large vertical variation from 
the center of the band. In this context, each curve is a 
cluster and the challenge is to use only the observations 
to estimate how many curves comprise the mixture, 
plus their shapes and locations. To achieve that goal, 
the human eye could train a classifier by providing 
cluster labels to all points in example scatter plots. 
Each point would either belong to a curved-region or 
to a catch-all noise category and a specialized cluster 
analysis would be used to develop an approach for 
labeling (clustering) the points generated according to 
the same mechanism in future scatter plots.

BACKGROUND

Two key features that distinguish various types of 
clustering approaches are the assumed mechanism 
for how the data is generated and the dimension of 
the data. The data-generation mechanism includes 
deterministic and stochastic components and often 
involves deterministic mean shifts between clusters 
in high dimensions.  But there are other settings for 
cluster analysis. The particular one discussed here 
involves identifying thunderstorm events from satel-
lite data as described in the Introduction. From the 
four examples in Figure 1, note that the data can be 
described as a mixture of curves where any notion 
of a cluster mean would be quite different from that 
in more typical clustering applications. Furthermore, 
although finding clusters in a two-dimensional scatter 
plot seems less challenging than in higher-dimensions 
(the trained human eye is likely to perform as well 
as any machine-automated method, although the eye 
would be slower), complications include: overlapping 
clusters, varying noise magnitude, varying feature and 
noise and density, varying feature shape, locations, 
and length, and varying types of noise (scene-wide 
and event-specific). Any one of these complications 
would justify treating the fitting of curve mixtures as 
an important special case of cluster analysis.  

Although as in pattern recognition, the methods 
discussed below require training scatter plots with 
points labeled according to their cluster memberships, 
we regard this as cluster analysis rather than pattern 
recognition because all scatter plots have from zero 
to four or five clusters whose shape, length, location, 
and extent of overlap with other clusters varies among 
scatter plots. The training data can be used to both 
train clustering methods, and then judge their qual-
ity. Fitting mixtures of curves is an important special 
case that has received relatively little attention to date.  
Fitting mixtures of probability distributions dates to 
Titterington et al. (1985), and several model-based 
clustering schemes have been developed (Banfield and 
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Raftery, 1993, Bensmail et al., 1997 and Dasgupta and 
Raftery, 1998) along with associated theory (Leroux, 
1992).  However, these models assume that the mixture 
is a mixture of probability distributions (often Gauss-
ian, which can be long and thin, ellipsoidal, or more 
circular) rather than curves. More recently, methods 
for mixtures of curves have been introduced, includ-
ing a mixture of principal curves model (Stanford and 
Raftery, 2000), a mixture of regressions model (Turner, 
2000; Gaffney and Smyth 2003, and Hurn, Justel, and 
Robert, 2003), and mixtures of local regression models 
(smooth curves obtained using splines or nonparametric 
kernel smoothers for example) 

MAIN THRUST OF THE CHAPTER

We describe four methods have been proposed for 
fitting mixtures of curves.  In method 1 (Burr et al., 

2001), density estimation is used to reject the back-
ground noise points such as those labeled as 2 in Figure 
1a. For example, each point has a distance to its kth 
nearest neighbor, which can be used as a local density 
estimate (Silverman, 1986) to reject noise points. Next, 
use a distance measure that favors long thin clusters 
(for example, let the distance between clusters be the 
minimum distance between a point in the first cluster 
and a point in the second cluster) together with standard 
hierarchical clustering to identify at least the central 
portion of each cluster.  Alternatively, model-based 
clustering favoring long, thin Gaussian shapes (Banfield 
and Raftery, 1993) or the “fitting straight lines” method 
in Campbell et al. (1997) are effective for finding the 
central portion of each cluster. A curve fitted to this 
central portion can be extrapolated and then used to 
accept other points as members of the cluster. Because 
hierarchical clustering cannot accommodate overlap-
ping clusters, this method assumes that the central 
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Figure 1. Four mixture examples containing (a) one, (b) one, (c) two, and (d) zero thunderstorm events plus 
background noise. The label “1” is for the first thunderstorm in the scene, “2” for the second, etc., and the 
highest integer label is reserved for the catch-all “noise” class. Therefore, in (d), because the highest integer is 
1, there is no thunderstorm present (the “mixture” is all noise)
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