
���

B

Section: Partitioning

Bitmap Join Indexes vs. Data Partitioning
Ladjel Bellatreche
Poitiers University, France

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Scientific databases and data warehouses store large
amounts of data ith several tables and attributes. For
instance, the Sloan Digital Sky Survey (SDSS) astro-
nomical database contains a large number of tables
with hundreds of attributes, which can be queried in
various combinations (Papadomanolakis & Ailamaki,
2004). These queries involve many tables using binary
operations, such as joins. To speed up these queries,
many optimization structures were proposed that can be
divided into two main categories: redundant structures
like materialized views, advanced indexing schemes
(bitmap, bitmap join indexes, etc.) (Sanjay, Chaudhuri
& Narasayya, 2000) and vertical partitioning (Sanjay,
Narasayya & Yang 2004) and non redundant structures
like horizontal partitioning (Sanjay, Narasayya & Yang
2004; Bellatreche, Boukhalfa & Mohania, 2007) and
parallel processing (Datta, Moon, & Thomas, 2000;
Stöhr, Märtens & Rahm, 2000). These optimization
techniques are used either in a sequential manner ou
combined. These combinations are done intra-struc-
tures: materialized views and indexes for redundant
and partitioning and data parallel processing for no
redundant. Materialized views and indexes compete for
the same resource representing storage, and incur main-
tenance overhead in the presence of updates (Sanjay,
Chaudhuri & Narasayya, 2000). None work addresses
the problem of selecting combined optimization struc-
tures. In this paper, we propose two approaches; one
for combining a non redundant structures horizontal
partitioning and a redundant structure bitmap indexes
in order to reduce the query processing and reduce
the maintenance overhead, and another to exploit al-
gorithms for vertical partitioning to generate bitmap
join indexes. To facilitate the understanding of our
approaches, for review these techniques in details.

Data partitioning is an important aspect of physical
database design. In the context of relational data ware-
houses, it allows tables, indexes and materialised views
to be partitioned into disjoint sets of rows and columns
that are physically stored and accessed separately

(Sanjay, Narasayya & Yang 2004). It has a significant
impact on performance of queries and manageability
of data warehouses. Two types of data partitioning are
available: vertical and horizontal partitionings.

The vertical partitioning of a table T splits it into
two or more tables, called, sub-tables or vertical frag-
ment, each of which contains a subset of the columns
in T. Since many queries access only a small subset of
the columns in a table, vertical partitioning can reduce
the amount of data that needs to be scanned to answer
the query. Note that the key columns are duplicated in
each vertical fragment, to allow “reconstruction” of an
original row in T. Unlike horizontal partitioning, indexes
or materialized views, in most of today’s commercial
database systems there is no native Database Definition
Language (DDL) support for defining vertical parti-
tions of a table (Sanjay, Narasayya & Yang 2004). The
horizontal partitioning of an object (a table, a vertical
fragment, a materialized view, and an index) is specified
using a partitioning method (range, hash, list), which
maps a given row in an object to a key partition. All
rows of the object with the same partition number are
stored in the same partition.

Bitmap index is probably the most important result
obtained in the data warehouse physical optimization
field (Golfarelli, Rizzi & Saltarelli, 2002). The bitmap
index is more suitable for low cardinality attributes
since its size strictly depends on the number of distinct
values of the column on which it is built. Bitmap join
indexes (BJIs) are proposed to speed up join operations
(Golfarelli, Rizzi & Saltarelli, 2002). In its simplest
form, it can be defined as a bitmap index on a table R
based on a single column of another table S, where S
commonly joins with R in a specific way.

Many studies have recommended the combination of
redundant and non redundant structures to get a better
performance for a given workload (Sanjay, Narasayya
& Yang 2004; Bellatreche, Schneider, Lorinquer &
Mohania, 2004). Most of previous work in physical
database design did not consider the interdependence
between redundant and no redundant optimization
structures. Logically, BJIs and horizontal partitioning

���

Bitmap Join Indexes vs. Data Partitioning

are two similar optimization techniques - both speed
up query execution, pre-compute join operations and
concern selection attributes of dimension tables1. Fur-
thermore, BJIs and HP can interact with one another,
i.e., the presence of an index can make a partitioned
schema more efficient and vice versa (since fragments
have the same schema of the global table, they can be
indexed using BJIs and BJIs can also be partitioned
(Sanjay, Narasayya & Yang 2004)).

BACKGROUND

Note that each BJI can be defined on one or several non
key dimension’s attributes with a low cardinality (that
we call indexed columns) by joining dimension tables
owned these attributes and the fact table2.

Definition: An indexed attribute Aj candidate for
defining a BJI is a column Aj of a dimension table Di
with a low cardinality (like gender attribute) such that
there is a selection predicate of the form: Di.Aj θ value,
θ is one of six comparison operators {=,<,>,<=,>=},
and value is the predicate constant.

For a large number of indexed attributes candidates,
selecting optimal BJIs is an NP-hard problem (Bel-
latreche, Boukhalfa & Mohania, 2007).

On the other hand, the best way to partition a rela-
tional data warehouse is to decompose the fact table
based on the fragmentation schemas of dimension
tables (Bellatreche & Boukhalfa, 2005). Concretely, (1)
partition some/all dimension tables using their simple
selection predicates (Di.Aj θ value), and then (2) parti-
tion the facts table using the fragmentation schemas of
the fragmented dimension tables (this fragmentation
is called derived horizontal fragmentation (Özsu a
Valduriez, 1999)). This fragmentation procedure takes
into consideration the star join queries requirements.
The number of horizontal fragments (denoted by N) of
the fact table generated by this partitioning procedure
is given by:

N =
 1

g

i
i

m
=
∏ ,

where mi and g are the number of fragments of the
dimension table Di and the number of dimension tables
participating in the fragmentation process, respec-
tively. This number may be very large (Bellatreche &
Boukhalfa & Abdalla, 2006). Based on this definition,

there is a strong similarity between BJIs and horizontal
partitioning as show the next section.

Similarity between HP and BJIs

To show the similarity between HP and BJIs, the follow-
ing scenario is considered3. Suppose a data warehouse
represented by three dimension tables (TIME, CUS-
TOMER and PRODUCT) and one fact table (SALES).
The population of this schema is given in Figure 1. On
the top of this the following query is executed:

SELECT Count(*)
FROM CUSTOMER C, PRODUCT P, TIME T,
SALES S
WHEERE C.City=’LA’
AND P.Range=’Beauty’
AND T.Month=’June’
AND P.PID=S.PID
AND C.CID=S.CID
AND T.TID=S.TID

This query has three selection predicates defined
on dimension table attributes City (City=’LA’), Range
(Range=’Beauty’) and Month (Month = ’June’) and

Customer

LAPascal1111
LAEric2122
Tokyo Didier3133
Tokyo Patrick4144
ParisYves5155
LAGilles6166
CityNameCID RIDC

FitnessSlimForm1011
GarderingManure1022
ToysBarbie1033

MultimediaWebCam104 4
BeautyClarins1055
BeautySonoflore1066
RangeNamePID RIDP

2003Jun661
2003May552
2003Apr443

2003Mar 334
2003Feb225
2003Jan116
YearMonth TID RIDT

Product

Time

1811106 212 24
1966105 313 25
1722105313 26
1511106 313 27

1855105 212 23
1044105 212 22
1011105212 21
2055104 616 20
2022104 616 19
2022104 515 18
4066104 212 17
4466105 111 16
4544103 212 15
1755103515 14
100 66102 515 13
103 55102 414 12
102 11102 414 11
200 11102 313 10
10011101 212 9
2733101 111 8
2044101 111 7
1455106 212 6
1466105 414 5
1011104 545 4
5033104 616 3
2866106 616 2
2511106616 1
AmountTID PID CID RIDS

Sales

Figure 1. Sample of data warehouse population

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/bitmap-join-indexes-data-partitioning/10816

Related Content

Video Data Mining
JungHwan Oh (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 2042-2047).

www.irma-international.org/chapter/video-data-mining/11100

Modeling the KDD Process
Vasudha Bhatnagarand S. K. Gupta (2009). Encyclopedia of Data Warehousing and Mining, Second Edition

(pp. 1337-1345).

www.irma-international.org/chapter/modeling-kdd-process/10995

Control-Based Database Tuning Under Dynamic Workloads
Yi-Cheng Tuand Gang Ding (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 333-

338).

www.irma-international.org/chapter/control-based-database-tuning-under/10841

On Clustering Techniques
Sheng Maand Tao Li (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 264-268).

www.irma-international.org/chapter/clustering-techniques/10831

Data Reduction with Rough Sets
Richard Jensen (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 556-560).

www.irma-international.org/chapter/data-reduction-rough-sets/10875

http://www.igi-global.com/chapter/bitmap-join-indexes-data-partitioning/10816
http://www.igi-global.com/chapter/bitmap-join-indexes-data-partitioning/10816
http://www.irma-international.org/chapter/video-data-mining/11100
http://www.irma-international.org/chapter/modeling-kdd-process/10995
http://www.irma-international.org/chapter/control-based-database-tuning-under/10841
http://www.irma-international.org/chapter/clustering-techniques/10831
http://www.irma-international.org/chapter/data-reduction-rough-sets/10875

