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INTRODUCTION

Scientific databases and data warehouses store large 
amounts of data ith several tables and attributes. For 
instance, the Sloan Digital Sky Survey (SDSS) astro-
nomical database contains a large number of tables 
with hundreds of attributes, which can be queried in 
various combinations (Papadomanolakis & Ailamaki, 
2004). These queries involve many tables using binary 
operations, such as joins. To speed up these queries, 
many optimization structures were proposed that can be 
divided into two main categories: redundant structures 
like materialized views, advanced indexing schemes 
(bitmap, bitmap join indexes, etc.) (Sanjay, Chaudhuri 
& Narasayya, 2000) and vertical partitioning (Sanjay, 
Narasayya & Yang 2004)  and non redundant structures 
like horizontal partitioning (Sanjay, Narasayya & Yang 
2004; Bellatreche, Boukhalfa & Mohania, 2007) and 
parallel processing (Datta, Moon, & Thomas, 2000; 
Stöhr, Märtens & Rahm, 2000). These optimization 
techniques are used either in a sequential manner ou 
combined. These combinations are done intra-struc-
tures: materialized views and indexes for redundant 
and partitioning and data parallel processing for no 
redundant. Materialized views and indexes compete for 
the same resource representing storage, and incur main-
tenance overhead in the presence of updates (Sanjay, 
Chaudhuri & Narasayya, 2000).  None work addresses 
the problem of selecting combined optimization struc-
tures. In this paper, we propose two  approaches; one 
for combining a non redundant structures horizontal 
partitioning and a redundant structure bitmap indexes 
in order to reduce the query processing and reduce 
the maintenance overhead, and another to exploit al-
gorithms for vertical partitioning to generate bitmap 
join indexes. To facilitate the understanding of our 
approaches, for review these techniques in details. 

Data partitioning is an important aspect of physical 
database design. In the context of relational data ware-
houses, it allows tables, indexes and materialised views 
to be partitioned into disjoint sets of rows and columns 
that are physically stored and accessed separately 

(Sanjay, Narasayya & Yang 2004). It has a significant 
impact on performance of queries and manageability 
of data warehouses. Two types of data partitioning are 
available: vertical and horizontal partitionings. 

The vertical partitioning of a table T splits it into 
two or more tables, called, sub-tables or vertical frag-
ment, each of which contains a subset of the columns 
in T. Since many queries access only a small subset of 
the columns in a table, vertical partitioning can reduce 
the amount of data that needs to be scanned to answer 
the query. Note that the key columns are duplicated in 
each vertical fragment, to allow “reconstruction” of an 
original row in T. Unlike horizontal partitioning, indexes 
or materialized views, in most of today’s commercial 
database systems there is no native Database Definition 
Language (DDL) support for defining vertical parti-
tions of a table (Sanjay, Narasayya & Yang 2004). The 
horizontal partitioning of an object (a table, a vertical 
fragment, a materialized view, and an index) is specified 
using a partitioning method (range, hash, list), which 
maps a given row in an object to a key partition. All 
rows of the object with the same partition number are 
stored in the same partition.  

Bitmap index is probably the most important result 
obtained in the data warehouse physical optimization 
field (Golfarelli, Rizzi & Saltarelli, 2002). The bitmap 
index is more suitable for low cardinality attributes 
since its size strictly depends on the number of distinct 
values of the column on which it is built. Bitmap join 
indexes (BJIs) are proposed to speed up join operations 
(Golfarelli, Rizzi  & Saltarelli, 2002). In its simplest 
form, it can be defined as a bitmap index on a table R 
based on a single column of another table S, where S 
commonly joins with R in a specific way.

Many studies have recommended the combination of 
redundant and non redundant structures to get a better 
performance for a given workload (Sanjay, Narasayya 
& Yang 2004; Bellatreche, Schneider, Lorinquer & 
Mohania, 2004). Most of previous work in physical 
database design did not consider the interdependence 
between redundant and no redundant optimization 
structures. Logically, BJIs and horizontal partitioning 
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are two similar optimization techniques - both speed 
up query execution, pre-compute join operations and 
concern selection attributes of dimension tables1. Fur-
thermore, BJIs and HP can interact with one another, 
i.e., the presence of an index can make a partitioned 
schema more efficient and vice versa (since fragments 
have the same schema of the global table, they can be 
indexed using BJIs and BJIs can also be partitioned 
(Sanjay, Narasayya & Yang 2004)). 

BACKGROUND

Note that each BJI can be defined on one or several non 
key dimension’s attributes with a low cardinality (that 
we call indexed columns) by joining dimension tables 
owned these attributes and the fact table2.

Definition: An indexed attribute Aj candidate for 
defining a BJI is a column Aj of a dimension table Di 
with a low cardinality (like gender attribute) such that 
there is a selection predicate of the form: Di.Aj θ value, 
θ is one of six comparison operators {=,<,>,<=,>=}, 
and value is the predicate constant. 

For a large number of indexed attributes candidates, 
selecting optimal BJIs is an NP-hard problem (Bel-
latreche, Boukhalfa & Mohania, 2007). 

On the other hand, the best way to partition a rela-
tional data warehouse is to decompose the fact table 
based on the fragmentation schemas of dimension 
tables (Bellatreche & Boukhalfa, 2005). Concretely, (1) 
partition some/all dimension tables using their simple 
selection predicates (Di.Aj θ value), and then (2) parti-
tion the facts table using the fragmentation schemas of 
the fragmented dimension tables (this fragmentation 
is called derived horizontal fragmentation (Özsu a 
Valduriez, 1999)). This fragmentation procedure takes 
into consideration the star join queries requirements. 
The number of horizontal fragments (denoted by N) of 
the fact table generated by this partitioning procedure 
is given by: 

N =
 1

g

i
i

m
=
∏ , 

where mi and g are the number of fragments of the 
dimension table Di and the number of dimension tables 
participating in the fragmentation process, respec-
tively. This number may be very large (Bellatreche & 
Boukhalfa & Abdalla, 2006). Based on this definition, 

there is a strong similarity between BJIs and horizontal 
partitioning as show the next section.

Similarity between HP and BJIs

To show the similarity between HP and BJIs, the follow-
ing scenario is considered3. Suppose a data warehouse 
represented by three dimension tables (TIME, CUS-
TOMER and PRODUCT) and one fact table (SALES). 
The population of this schema is given in Figure 1. On 
the top of this the following query is executed:

SELECT Count(*)
FROM CUSTOMER C, PRODUCT P, TIME T, 
SALES S
WHEERE C.City=’LA’
AND P.Range=’Beauty’
AND T.Month=’June’
AND P.PID=S.PID
AND C.CID=S.CID 
AND T.TID=S.TID

This query has three selection predicates defined 
on dimension table attributes City (City=’LA’), Range 
(Range=’Beauty’) and Month (Month = ’June’) and 

Customer

LAPascal1111
LAEric2122
Tokyo Didier3133
Tokyo Patrick4144
ParisYves5155
LAGilles6166
CityNameCID RIDC 

FitnessSlimForm1011
GarderingManure1022
ToysBarbie1033

MultimediaWebCam104 4 
BeautyClarins1055
BeautySonoflore1066
RangeNamePID RIDP 

2003Jun661
2003May552
2003Apr443

2003Mar 334 
2003Feb225
2003Jan116
YearMonth TID RIDT 

Product 

Time

1811106 212 24
1966105 313 25
1722105313 26
1511106 313 27

1855105 212 23
1044105 212 22
1011105212 21
2055104 616 20
2022104 616 19
2022104 515 18
4066104 212 17
4466105 111 16
4544103 212 15
1755103515 14
100 66102 515 13
103 55102 414 12
102 11102 414 11
200 11102 313 10
10011101 212 9
2733101 111 8 
2044101 111 7 
1455106 212 6 
1466105 414 5 
1011104 545 4 
5033104 616 3 
2866106 616 2 
2511106616 1 
AmountTID PID CID RIDS 

Sales 

Figure 1. Sample of data warehouse population
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