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INTRODUCTION

Understanding the roles of genes and their interactions 
is one of the central challenges in genome research. 
One popular approach is based on the analysis of 
microarray gene expression data (Golub et al., 1999; 
White, et al., 1999; Oshlack et al., 2007). By their very 
nature, these data often do not capture spatial patterns 
of individual gene expressions, which is accomplished 
by direct visualization of the presence or absence of 
gene products (mRNA or protein) (e.g., Tomancak et al., 
2002; Christiansen et al., 2006).  For instance, the gene 
expression pattern images of a Drosophila melanogaster 
embryo capture the spatial and temporal distribution 
of gene expression patterns at a given developmental 
stage (Bownes, 1975; Tsai et al., 1998; Myasnikova 
et al., 2002; Harmon et al., 2007). The identification 
of genes showing spatial overlaps in their expression 
patterns is fundamentally important to formulating 
and testing gene interaction hypotheses (Kumar et al., 
2002; Tomancak et al., 2002; Gurunathan et al., 2004; 
Peng & Myers, 2004; Pan et al., 2006).

Recent high-throughput experiments of Drosophila 
have produced over fifty thousand images (http://www.
fruitfly.org/cgi-bin/ex/insitu.pl). It is thus desirable to 
design efficient computational approaches that can 
automatically retrieve images with overlapping expres-
sion patterns. There are two primary ways of accom-
plishing this task.  In one approach, gene expression 
patterns are described using a controlled vocabulary, 
and images containing overlapping patterns are found 
based on the similarity of textual annotations. In the 
second approach, the most similar expression patterns 
are identified by a direct comparison of image content, 
emulating the visual inspection carried out by biologists 

[(Kumar et al., 2002); see also www.flyexpress.net].
The direct comparison of image content is expected 
to be complementary to, and more powerful than, 
the controlled vocabulary approach, because it is un-
likely that all attributes of an expression pattern can be 
completely captured via textual descriptions. Hence, 
to facilitate the efficient and widespread use of such 
datasets, there is a significant need for sophisticated, 
high-performance, informatics-based solutions for the 
analysis of large collections of biological images.

BACKGROUND

The identification of overlapping expression patterns 
is critically dependent on a pre-defined pattern simi-
larity between the standardized images. Quantifying 
pattern similarity requires deriving a vector of features 
that describes the image content (gene expression and 
localization patterns). We have previously derived a 
binary feature vector (BFV) in which a threshold value 
of intensity is used to decide the presence or absence 
of expression at each pixel coordinate, because our 
primary focus is to find image pairs with the highest 
spatial similarities (Kumar et al., 2002; Gurunathan et 
al., 2004). This feature vector approach performs quite 
well for detecting overlapping expression patterns from 
early stage images. However, the BFV representation 
does not utilize the gradations in the intensity of gene 
expression because it gives the same weight to all 
pixels with greater intensity than the cut-off value. As 
a result, small regions without expression or with faint 
expression may be ignored, and areas containing mere 
noise may influence image similarity estimates. Pat-
tern similarity based on the vector of pixel intensities 
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(of expression) has been examined by Peng & Myers 
(2004), and their early experimental results appeared 
to be promising. Peng & Myers (2004) model each 
image using the Gaussian Mixture Model (GMM) 
(McLachlan& Peel, 2000), and they evaluate the 
similarity between images based on patterns captured 
by GMMs. However, this approach is computationally 
expensive.

In general, the number of features in the BFV 
representation is equal to the number of pixels in the 
image.  This number is over 40,000 because the Fly-
Express database currently scales all embryos to fit in a 
standardized size of 320×128 pixels (www.flyexpress.
net).  Analysis of such high-dimensional data typically 
takes the form of extracting correlations between data 
objects and discovering meaningful information and 
patterns in data. Analysis of data with continuous at-
tributes (e.g., features based on pixel intensities) and 
with discrete attributes (e.g., binary feature vectors) 
pose different challenges. 

Principal Component Analysis (PCA) is a popular 
approach for extracting low-dimensional patterns from 
high-dimensional, continuous-attribute data (Jolliffe, 
1986; Pittelkow & Wilson, 2005).  It has been success-
fully used in applications such as computer vision, image 
processing, and bioinformatics. However, PCA involves 
the expensive eigen-decomposition of matrices, which 
does not scale well to large databases. Furthermore, 
PCA works only on data in vector form, while the 
native form of an image is a matrix. We have recently 
developed an approach called “Generalized Low Rank 
Approximation of Matrices” (GLRAM) to overcome 
the limitations of PCA by working directly on data in 
matrix form; this has been shown to be effective for 
natural image data (Ye et al., 2004; Ye, 2005). 

Here, we propose expression similarity measures 
that are derived from the correlation information among 
all images in the database, which is an advancement 
over the previous efforts wherein image pairs were ex-
clusively used for deriving such measures (Kumar et al., 
2002; Gurunathan et al., 2004; Peng & Myers, 2004). 
In other words, in contrast to previous approaches, we 
attempt to derive data-dependent similarity measures 
in detecting expression pattern overlap. It is expected 
that data-dependent similarity measures will be more 
flexible in dealing with more complex expression pat-
terns, such as those from the later developmental stages 
of embryogenesis.

MAIN FOCUS 

We are given a collection of n gene expression pat-
tern images { }1 2, , , r c

nA A A ×∈ℜ , with r rows and 
c columns. GLRAM (Ye, 2005, Ye et al., 2004) aims 
to extract low-dimensional patterns from the image 
dataset by applying two transformations r uL ×∈ℜ  and 

c vR ×∈ℜ  with orthonormal columns, that is, LTL = Iu 
and RTR = Iv, where Iu and Iv are identity matrices of 
size u and v, respectively. Each image Ai  is transformed 
to a low-dimensional matrix T u v

i iM L A R ×= ∈ℜ , for i 
= 1, ..., n. Here, u < r and v < c are two pre-specified 
parameters. 

In GLRAM, the optimal transformations L* and R* 
are determined by solving the following optimization 
problem:
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Here, F⋅  denotes the Frobenius norm of a matrix 
(Golub & Van Loan, 1996). To the best of our knowl-
edge, there is no closed-form solution to the above 
maximization problem. However, if one of the two 
matrices L and R is given, the other one can be readily 
computed. More specifically, if L is given, the optimal 
R is given by the top eigenvectors of the matrix 
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while for a given R, the optimal L is given by the top 
eigenvectors of the matrix
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This results in an iterative procedure for computing 
L and R in GLRAM. For the given L and R, the low-
dimensional matrix is given by Mi = L

TAiR.
The dissimilarity between two expression patterns Ai  

and Aj  is defined to be  ( ) .T
i j i jF F

M M L A A R− = −   
That is, GLRAM extracts the similarity between im-
ages through the transformations L and R. A key dif-
ference between the similarity computation based on 
the Mi ’s and the direct similarity computation based 
on the Ai’s lies in the pattern extraction step involved 
in GLRAM. The columns of L and R form the basis 
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