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INTRODUCTION

The availability of reliable learning systems is of strategic
importance, as many tasks cannot be solved by classical
programming techniques, because no mathematical model
of the problem is available. So, for example, no one knows
how to write a computer program that performs handwrit-
ten character recognition, though plenty of examples are
available. It is, therefore, natural to ask if a computer could
be trained to recognize the letter A from examples; after all,
humans learn to read this way. Given the increasing
quantity of data for analysis and the variety and complex-
ity of data analysis problems being encountered in busi-
ness, industry, and research, demanding the best solution
every time is impractical. The ultimate dream, of course, is
to have some intelligent agent that can preprocess data,
apply the appropriate mathematical, statistical, and artifi-
cial intelligence techniques, and then provide a solution
and an explanation. In the meantime, we must be content
with the pieces of this automatic problem solver. The data
miner’s purpose is to use the available tools to analyze
data and provide a partial solution to a business problem.

The support vector machines (SVMs) have been de-
veloped as a robust tool for classification and regression
in noisy and complex domains. SVMs can be used to
extract valuable information from data sets and construct
fast classification algorithms for massive data.

The two key features of support vector machines are
the generalization theory, which leads to a principled way
to choose a hypothesis, and kernel functions, which
introduce nonlinearity in the hypothesis space without
explicitly requiring a nonlinear algorithm.

SVMs map data points to a high-dimensional feature
space, where a separating hyperplane can be found. This
mapping can be carried on by applying the kernel trick,
which implicitly transforms the input space into high-
dimensional feature space. The separating hyperplane is
computed by maximizing the distance of the closest pat-
terns, that is, margin maximization.

SVMs can be defined as “a system for efficiently
training linear learning machines in kernel-induced fea-
ture spaces, while respecting the insights of generalisation

theory and exploiting optimisation theory” (Cristianini &
Shawe-Taylor, 2000, p. 93).

Support vector machines have been applied in many
real-world problems and in several areas: pattern recogni-
tion, regression, multimedia, bio-informatics, artificial in-
telligence, and so forth.

Many techniques, such as decision trees, neural net-
works, genetic algorithms, and so on, have been used in
these areas; however, what distinguishes SVMs is their
solid mathematical foundation, which is based on the
statistical learning theory. Instead of minimizing the train-
ing error (empirical risk), SVMs minimize the structural
risk, which expresses an upper bound on the generaliza-
tion error, that is, the probability of an erroneous classi-
fication on yet to be seen examples. This quality makes
SVMs especially suited for many applications with sparse
training data.

BACKGROUND

The general problem of machine learning is to search a
(usually) very large space of potential hypotheses to
determine the one that will best fit the data and any prior
knowledge.

“A computer program is said to learn from experience
E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by
P, improves with experience E” (Mitchell, 1997, p. 2).

Machine learning can be categorized into several
categories based on the data set and labels of the data set.
The data used for learning may be labeled (for example,
data might be medical records, where each record reflects
the history of a patient and has a label denoting whether
that patient had heart disease or not) or unlabeled. If
labels are given, then the problem is one of supervised
learning, in that the true answer is known for a given set
of data. If the labels are categorical, then the problem is
one of classification, for example, predicting the species
of a flower given petal and sepal measurements. If the
labels are real-valued, then the problem is one of regres-
sion statistics, for example, predicting property values
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from crime, pollution, and so forth. If labels are not given,
then the problem is one of unsupervised learning, and the
aim is to characterize the structure of the data, for example,
by identifying groups of examples in the data that are
collectively similar to each other and distinct from the
other data.

Pattern Recognition

Formally, in pattern recognition, we want to estimate a
function }1{: ±→NRf by using input-output training

data, }1{),(),...,,( 11 ±×∈ N
ll Ryxyx , such that f will correctly

classify unseen examples (x,y), that is, f(x)=y for examples
(x,y) that were generated from the same underlying prob-
ability distribution P(x,y) as the training data. Each data
point has numerical properties that might be useful to
distinguish them and that are represented by x in (x,y). The
y is either +1 or –1 to denote the label or the class to which
this data point belongs. For example, in a medical record,
x might be the age, weight, allergy, blood pressure, blood
type, disease, and so forth. The y might represent whether
the person is susceptible to a heart attack. Notice that
some attributes, such as an allergy, might need to be
encoded (for example, 1 if the person is allergic to medi-
cine, or 0 if not) in order to be represented as a numerical
value.

If we put no restriction on the class of functions that
we choose our estimate f from, even a function that does
well on the training data, for example, by satisfy-
ing liyxf ii ,...,1 allfor  )( == , might not require to general-
ize well to unseen examples. To see this, note that for each
function f and test set }1{),(),...,,( 11 ±×∈ N

ll Ryxyx  satisfy-

ing {}},...,{},...,{ 11 =∩ ll xxxx , there exists another func-

tion *f such that lixfxf ii ,...,1 allfor  )()(* == ,  yet

lixfxf ii ,...,1 allfor  )()(* =≠ ; that is, both functions, f and
f* , return the same prediction for all training examples, yet
they disagree on their predictions for all testing examples.

As we are only given the training data, we have no
means of selecting which of the two functions (and hence
which of the completely different sets of test outputs) is
preferable. Hence, only minimizing the training error (or
empirical risk),
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does not imply a small test error (called risk), averaged
over test examples drawn from the underlying distribu-
tion ),( yxP ,
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In Equation 1, notice that the error, ii yxf −)( , is equal

to 0 if the data point ix is correctly classified, because

ii yxf =)( .
Statistical learning theory (Vapnik & Chervonenkis,

1974; Vapnik, 1979), or VC (Vapnik-Chervonenkis) theory,
shows that it is imperative to restrict the class of functions
that f is chosen from to one that has a capacity suitable for
the amount of available training data. VC theory provides

 

Figure 1A. VC-dimension of H equals the set of all linear dicision surfaces
Figure 1B. Four points cannot be shattered by H
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