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Support Vector Machine 
Models for Classification

INTRODUCTION

A support vector machine (SVM) is a quadratic 
programming (QP) model with training or learning 
algorithms. Developed by Vapnik (1995, 1998) and 
his coworkers, SVMs are used for classification, 
regression and function approximation. Because 
SVMs are QP models, this chapter discusses SVMs 
for classification from the mathematical program-
ming (MP) perspective. SVMs are machine learn-
ing techniques because a SVM is usually trained, 
usually through numerical methods, to determine 
the values of the parameters in the classification 
function or discriminant functions.

As any other classification techniques, a SVM 
is used to construct a classification function or 
discriminant functions based on known values 
of the attributes or variables and known class 
memberships of the observations in a sample. The 
constructed classification function or discriminant 
functions are then used to evaluate the attribute 
values of any observation to obtain discriminant 
scores and to assign the observation into one of 
the classes. Many discriminant and classifica-
tion techniques have been developed because 
no single technique always outperforms others 
under all situations (Johnson & Wichern, 1988). 
Statistical techniques, such as Fisher’s linear 
discriminant function (Fisher, 1936), Smith’s 
quadratic discriminant function (Smith, 1947) 
and logistic regression (Hand, 1981), have been 
standard tools for this purpose. More recently, 
other techniques, such as MP (Hand, 1981; Sun, 
2010, 2011, 2014), neural networks (Stern, 1996) 
and classification trees (Breiman et al., 1984), 
have become alternative tools.

SVM (Vapnik, 1995, 1998) is a recent revo-
lutionary development in classification analysis. 
Although they are modifications of the linear 
programming (LP) or mixed integer program-
ming (MIP) models, they perform much better 
than their LP and MIP counterparts. Because they 
are QP models, they are also much more difficult 
to solve than their LP counterparts. Three con-
cepts, classification margin maximization, dual 
formulation and kernels, are crucial in SVMs 
(Bredensteiner & Bennett, 1999). By minimizing 
the sum of classification errors and maximizing 
the classification margin at the same time in a QP 
model, SVMs construct discriminant functions 
with good generalization capabilities. Usually 
the dual formulation of the QP models is solved 
because the dual is usually easier to solve than the 
primal. By using inner product kernels in the dual 
formulations, SVMs can be built and nonlinear 
discriminant functions can be constructed in high 
dimensional feature spaces without carrying out 
the mappings from the input space to the high 
dimensional feature spaces. The size of the dual 
formulation is independent of the dimension of the 
input space and independent of the inner product 
kernels used.

However, most of the SVM research is for 
two-class classification although efforts have 
been made to extend the techniques to multi-class 
problems. Some of the approaches proposed in the 
literature for multi-class classification include the 
one-against-one approach (e.g., Friedman, 1996; 
Kreβel, 1999; Mayoraz & Alpaydin, 1999; Angulo 
et al., 2003), the one-against-all approach (e.g., 
Corte & Vapnik, 1995; Vapnik, 1995, 1998) and 
the one model formulation (e.g., Vapnik, 1995, 
1998; Corte & Vapnik, 1995; Bredensteiner & 
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Bennett, 1999; Weston & Watkins, 1999; Guer-
meur et al., 2000; Crammer & Singer, 2001; 
Guermeur, 2002; Lee et al., 2004; Sun, 2013). 
Examples of popular training software packages 
for SVMs include LIBSVM (Chang & Lin, 2011) 
and LIBLINEAR (Fan et al., 2008).

Two SVM models for discriminant and clas-
sification analysis are discussed in this chapter, 
one for two-class classification and the other for 
multi-class classification. Both the primal and 
dual formulations are discussed and an example 
is presented for each model. However, because 
SVMs are usually built in high dimensional fea-
ture spaces and usually the dual rather than the 
primal is solved, this chapter focuses on the dual 
formulations of SVM models in feature spaces 
using kernels.

CLASSIFICATION USING KERNELS

Assume a dataset with m  observations in p  
classes is available for analysis. The index set of 
the classes is represented by K . The index set of 
the observations in the whole dataset is repre-
sented by I  while that in class k  is represented 
by I

k
, for 1≤ ≤k p , such that I I

k
p

k
= =∪ 1

. 
Similarly, the number of observations in class k  
is represented by m

k
 such that m m

kk

p
=

=∑ 1
. 

Each observation is measured by an input vector 
of n  variables. The variables represent the mea-
surements on the characteristics or attributes of 
the observations. The input vector for a specific 
observation i I∈  in the dataset is represented by 
x
i

n∈ ℜ  and that of a generic observation by 
x ∈ ℜn .

Oftentimes, nonlinear classification or dis-
criminant functions perform better than linear 
ones. The observations in the classes are more 
accurately separated by a nonlinear classification 
function or by nonlinear discriminant functions 
than by linear ones. Therefore, nonlinear terms 
of the input variables, such as monomials and 
logarithms, are used in the classification or dis-

criminant functions. The input vectors x ∈ ℜn  
are mapped from the input space to feature vectors 
in a high dimensional feature space through the 
nonlinear mapping ϕ( )x ∈ ℜ ′n , with ′n n� . 
Hence, the classification function or the dis-
criminant functions are constructed in the high 
dimensional feature space ℜ ′n .

However, ϕ( )x  appears in the dual formulation 
of the SVM models only in the form of inner 
products. Through the use of inner product kernels 
K

i i
( , ) '( ) ( )x x x x= ϕ ϕ , the nonlinear mappings 

are not necessarily carried out or the function 
forms of ϕ( )x  are not necessarily known. Differ-
ent inner product kernels have been used in SVMs 
(Vapnik, 1995, 1998), such as the polynomial 
kernel and the radial basis function (RBF), also 
called the Gaussian, kernel. The polynomial ker-
nel has the form of

K
i i

q( , ) ( )x x x x= +Τ 1 , 	 (1)

where q ≥ 1  is an integer. The RBF kernel has 
the form of

K
i i
( , ) exp( | | )x x x x= − −γ 2 , 	 (2)

where γ  is a user provided parameter that may 
also be determined in the training process of the 
SVM. The polynomial and the RBF kernels will 
be used as examples in the following discussions. 
If a SVM is directly built in the input space, the 
mapping ϕ( )x x=  is used.

When p = 2 , the classification function in 
the feature space is of the form

f b( ) ( )x b x= + ′
0

ϕ , 	 (3)

where b
0
∈ ℜ  and b ∈ ℜ ′n  are the estimated 

parameters. The value of f ( )x  evaluated at a 
specific input vector x  is called a classification 
score. A hyperplane represented by f ( )x = 0  is 
supposed to separate the p = 2  classes. The 
function f ( )x  in (3) is a classification function 
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