
1781

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software

DOI: 10.4018/978-1-4666-5202-6.ch159

Parallelization and Load Balancing 
Techniques for HPC

INTRODUCTION

As multicore systems become ubiquitous in desk-
top, and in mobile and embedded systems, interest 
in high performance computing (HPC) techniques 
has increased. Further, several computation in-
tensive tasks demand use of high performance 
computing resources (Raju et al., 2009, Pande et 
al., 2009, Varré et al., 2011, Gupta et al., 2008) 
since sequential computing platforms are proving 
to be incapable of fulfilling the computational 
demands in these domains. Hence, researchers 
are using parallelization techniques. However, 
parallelization also brings the need of achieving 
load-balancing, since an unbalanced load distribu-
tion is likely to lead to wastage of processors and 
increased total completion time.

In this chapter, we discuss three different 
scheduling techniques which are used for achieving 
load-balancing. These techniques are static sched-
uling, master-slave scheduling and work-stealing. 
To show a concrete example of parallelization ap-
proach, we show the example of multi-threading in 
Java (Arnold et al., 2000). We discuss the relative 
advantages and disadvantages of multi-threading 
implementation in Java.

BACKGROUND

Parallel Programming

Parallel programming requires careful design 
to ensure functional correctness and avoid race 

conditions. Further, to gain performance, the data 
structure needs to be carefully designed to mini-
mize locking and maximize independent progress 
of each process. This is because from Amdahl’s law 
(Amdahl, 1967), the performance improvement 
achieved from parallelizing a program is limited 
by the fraction of time spent in the sequential part. 
In other words, Amdahl’s law suggests that since 
the sequential parts of an algorithm are the slowest, 
these parts present a bottleneck in performance 
scaling. Thus, to achieve high performance, careful 
management of work-division among computing 
elements and aggregation of the result is required.

The parallelization approach can be classified 
based on whether they use hardware parallelism or 
software parallelism. Hardware parallelism refers 
to the kind of parallelism defined by the machine 
architecture and hardware multiplicity. Hardware 
parallelism indicates the peak performance of a 
processor. As an example, if a processor issues N 
instructions in each machine cycle, it is referred 
to as a N-issue processor. In contrast, software 
parallelism is defined by the control and data 
dependence of programs. Here the degree of 
parallelism is shown in the program flow path or 
program profile. The amount of software paral-
lelism, which can be obtained, depends on the 
algorithm and programming style.

Recently, researchers have used different 
techniques such as multiprocessing and multi-
threading (Tullsen et al., 1995). Compared to pro-
cesses, threads are lightweight objects and hence, 
switching between them incurs less overhead than 
switching between processes. Moreover, threads 

Siddhartha Khaitan
Iowa State University, USA

James D. McCalley
Iowa State University, USA

P



1782

share memory and hence communication between 
them is also less expensive than that between the 
processes. Thus, using threads, the intermediate 
variables and the final result can be easily shared. 
Several programming languages inherently pro-
vide constructs to do parallel programming. We 
discuss this with the example of multi-threading 
in Java, as shown in Figure 1.

Figure 1 shows an example of how a schedul-
ing technique is implemented in Java, assuming 
that the tasks have equal priorities. First, the Java 
compiler generates bytecodes which is an architec-
ture-independent intermediate format. Bytecode 
enables transporting the code to multiple hardware 
and software platforms. These bytecodes are the 
instruction sets of the Java virtual machine. Thus, 
because of the interpreted nature of Java, the same 
Java language byte code can run on any platform 
and thus, the complexities of binary distribution 
and versioning are avoided.

In Java, multithreading is supported at the 
language level and the run-time system provides 
monitor and condition lock primitives. Depending 
on the requirements of the scheduler, JVM spawns 
multiple threads. Each thread is an object of Thread 
class in Java. Each object of the Thread class, en-
capsulates both the data and methods required for 
separate threads of execution. Different threads are 
executed using time-slicing and thus, the threads 
share the processor. In this manner, concurrency 
using multithreading can be achieved using even a 
single processor. In multicore platforms, different 
threads can be scheduled on different cores and 
thus, parallel resources can be explicitly used. 
Java’s high-level system libraries are thread-safe 
and hence, multiple concurrent threads can access 
the functionality provided by the libraries without 
causing a conflict.

By leveraging the flexibility of Java implemen-
tation, the scheduler can be used in distributed 
environments. Further, due to the in-built security 

Parallelization and Load Balancing Techniques for HPC

P
Figure 1. Use of multi-threading for parallelization using Java



 

 

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/parallelization-and-load-balancing-techniques-

for-hpc/107367

Related Content

Intelligent Systems to Support Human Decision Making
Gloria Phillips-Wren (2014). Encyclopedia of Business Analytics and Optimization (pp. 1297-1309).

www.irma-international.org/chapter/intelligent-systems-to-support-human-decision-making/107327

Luxury or Necessary Goods?: Analysis of Household Demand for Communication and IT

Products in OECD Countries
Yanbin Tu (2020). International Journal of Business Analytics (pp. 30-43).

www.irma-international.org/article/luxury-or-necessary-goods/258269

Big Data Problem, Technologies and Solutions
Hoda Ahmed Abdelhafez (2014). Encyclopedia of Business Analytics and Optimization (pp. 338-350).

www.irma-international.org/chapter/big-data-problem-technologies-and-solutions/107239

Business Intelligence Should be Centralized
Brian Johnson (2013). Principles and Applications of Business Intelligence Research (pp. 139-152).

www.irma-international.org/chapter/business-intelligence-should-centralized/72567

Improving Business Intelligence: The Six Sigma Way
Dorothy Miller (2010). International Journal of Business Intelligence Research (pp. 47-62).

www.irma-international.org/article/improving-business-intelligence/47195

http://www.igi-global.com/chapter/parallelization-and-load-balancing-techniques-for-hpc/107367
http://www.igi-global.com/chapter/parallelization-and-load-balancing-techniques-for-hpc/107367
http://www.irma-international.org/chapter/intelligent-systems-to-support-human-decision-making/107327
http://www.irma-international.org/article/luxury-or-necessary-goods/258269
http://www.irma-international.org/chapter/big-data-problem-technologies-and-solutions/107239
http://www.irma-international.org/chapter/business-intelligence-should-centralized/72567
http://www.irma-international.org/article/improving-business-intelligence/47195

