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INTRODUCTION

Graphical models such as Bayesian networks (BNs) (Pearl,
1988) and decomposable Markov networks (DMNs)
(Xiang, Wong & Cercone, 1997) have been applied widely
to probabilistic reasoning in intelligent systems. Figure1
illustrates a BN and a DMN on a trivial uncertain domain:
A virus can damage computer files, and so can a power
glitch. A power glitch also causes a VCR to reset. The BN
in (a) has four nodes, corresponding to four binary vari-
ables taking values from {true, false}. The graph structure
encodes a set of dependence and independence assump-
tions (e.g., that f is directly dependent on v, and p but is
independent of r, once the value of p is known). Each node
is associated with a conditional probability distribution
conditioned on its parent nodes (e.g., P(f | v, p)). The joint
probability distribution is the product P(v, p, f, r) = P(f |
v, p) P(r | p) P(v) P(p). The DMN in (b) has two groups
of nodes that are maximally pair-wise connected, called
cliques. Each clique is associated with a probability
distribution (e.g., clique {v, p, f} is assigned P(v, p, f)). The
joint probability distribution is P(v, p, f, r) = P(v, p, f) P(r,
p) / P(p), where P(p) can be derived from one of the clique
distributions. The networks, for instance, can be used to
reason about whether there are viruses in the computer
system, after observations on f and r are made.

Construction of such networks by elicitation from
domain experts can be very time-consuming. Automatic
discovery (Neapolitan, 2004) by exhaustively testing all
possible network structures is intractable. Hence, heuris-
tic search must be used. This article examines a class of
graphical models that cannot be discovered using the
common heuristics.

BACKGROUND

Let V be a set of n discrete variables x1, … , xn (in what
follows, we will focus on finite, discrete variables). Each
variable xi has a finite space Si = {xi,1, xi,2, … , xi,D } of
cardinality Di. When there is no confusion, we write xi,j as
xij for simplicity. The space of a set V of variables is defined
by the Cartesian product of the spaces of all variables in
V, that is, SV = S1 x ... x Sn (or ∏i iS ). Thus, SV contains the
tuples made of all possible combinations of values of the
variables in V. Each tuple is called a configuration of V,
denoted by v = (x1, … , xn).

Let P(xi ) denote the probability function over xi and
P(xij ) denote the probability value P(xi = xij ). A probabi-
listic domain model (PDM) Μ over V defines the probabil-
ity values of every configuration for every subset VA ⊆ .
Let P(V) or P(x1, … , xn) denote the joint probability
distribution (JPD) function over x1, … , xn and P(x1 j1, … ,
xn jn) denote the probability value of a configuration (x1 j1,
…, xn jn). We refer to the function P(A) over VA ⊂  as the
marginal distribution over A and P(xi) as the marginal
distribution of xi. We refer to P(x1 j1, … , xn jn) as a joint
parameter and P(xij) as a marginal parameter of the
corresponding PDM over V.

For any three disjoint subsets of variables W, U and
Z in V, subsets W and U are called conditionally indepen-
dent given Z, if

P(W | U, Z) = P(W | Z)

for all possible values in W, U and Z such that P(U, Z) >
0. Conditional independence signifies the dependence
mediated by Z. This allows the dependence among

ZUW ��  to be modeled over subsets ZW �  and ZU �

separately. Conditional independence is the key property
explored through graphical models.

Subsets W and U are said to be marginally indepen-
dent (sometimes referred to as unconditionally indepen-
dent) if

P(W | U) = P(W)

for all possible values W and U such that P(U) > 0. When
two subsets of variables are marginally independent,
there is no dependence between them. Hence, each subset

Figure 1. (a) a trivial example BN; (b) a corresponding
DMN
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can be modeled independently without losing information.
If each variable xi in a subset A is marginally indepen-

dent of A\{ xi }, the variables in A are said to be marginally
independent. The following proposition reveals a useful
property called factorization when this is the case.

• Proposition 1: If each variable xi in a subset A is
marginally independent of A\{ xi } then

∏
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Variables in a subset A are called generally depen-
dent, if P(B | A \ B) ≠P(B) for every proper subset AB ⊂ .
If a subset of variables is generally dependent, its proper
subsets cannot be modeled independently without losing
information. A generally dependent subset of variables,
however, may display conditional independence within
the subset. For example, consider A={x1, x2, x3}. If P(x1, x2|
x3) = P(x1, x2), i.e., {x1, x2} and x3 are marginally indepen-
dent, then A is not generally dependent. On the other
hand, if

P(x1, x2| x3) ≠ P(x1, x2), P(x2, x3| x1) ≠ P(x2, x3), P(x3, x1|
x2) ≠ P(x3, x1),

then A is generally dependent.
Variables in A are collectively dependent if, for each

proper subset AB ⊂ , there exists no proper subset
BAC \⊂  that satisfies P(B | A \ B) = P(B | C). Collective

dependence prevents conditional independence and
modeling through proper subsets of variables. Table 1
shows the JPD over a set of variables V={x1, x2, x, x4}. The
four variables are collectively dependent; for example,

P(x1,1, | x2.0, x3,1, x4,0) = 0.257

and

   P(x1,1, | x2.0, x3,1) = P(x1,1, | x2.0, x4,0) = P(x1,1, | x3.0, x4,0) = 0.3.

MAIN THRUST

Pseudo-Independent (PI) Models

A pseudo-independent (PI) model is a PDM where proper
subsets of a set of collectively dependent variables dis-
play marginal independence (Xiang, Wong & Cercone,
1997). The basic PI model is a full PI model:

• Definition 2 (Full PI model): A PDM over a set V (|V|
≥≥≥≥≥3) of variables is a full PI model, if the following
properties (called axioms of full PI models) hold:

(SI) Variables in each proper subset of V are margin-
ally independent.
(SII) Variables in V are collectively dependent.

Table 1 shows the JPD of a binary full PI model, where
V = {x1, x2, x 3, x4}. Its marginal parameters are

P(x1,0) = 0.7, P(x2,0) = 0.6, P(x3,0) = 0.35, P(x4,0) = 0.45.

Any subset of three variables are marginally indepen-
dent; for example,

P(x1,1, x2.0, x3,1) = P(x1,1) P(x2,0) P(x3,1) = 0.117.

The four variables are collectively dependent as ex-
plained previously.

Table 2 is the JPD of the color model given earlier,
where V = {x1, x2, x3}. The marginal independence can be
verified by

P(x1=red )= P(x2=red) = P(x3=red ) = 0.5,
P(x1=red \ x2) = P(x1=red \ x3) = P(x2=red \ x3) = 0.5,

and the collective dependence can be seen from P(x1=red
\ x2=red, x3=red )= 1.

By relaxing condition (SI) on marginal independence,
full PI models are generalized into partial PI models, which
are defined through marginally independent partition
(Xiang, Hu, Cercone & Hamilton, 2000) introduced in the
following:

• Definition 3 (Marginally Independent Partition):
Let V (|V| ≥≥≥≥≥3) be a set of variables, and B = { B1, …,
Bm

 } (m ≥≥≥≥≥2) be a partition of V. B is a marginally
independent partition if,  for every subset

},...,1,|{ mkBxxA kk
i

k
i =∈= , variables in A are mar-

ginally independent. Each block Bi is called a mar-
ginally independent block.

Intuitively, a marginally independent partition groups
variables in V into m blocks. If one forms a subset A by
taking one element from each block, then variables in A are
marginally independent. Unlike full PI models, in a partial
PI model, it is not necessary that every proper subset is
marginally independent. Instead, that requirement is re-
placed with the marginally independent partition.

• Definition 4 (Partial PI Model): A PDM over a set
V (|V| ≥≥≥≥≥3) of variables is a partial PI model, if the
following properties (called axioms of partial PI
models) hold:

(SI’) V can be partitioned into two or more marginally
independent blocks.
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