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FGP for Chance Constrained 
Fractional MODM Problem

INTRODUCTION

In a real-world decision situation, decision mak-
ers (DMs) are often faced with the problem of 
setting parameter values owing to imprecision in 
human judgments as well as inherent uncertainty 
in parameter values of problems. The two types of 
prominent approaches for solving such problems 
are: stochastic programming (SP) (Dantzig, 1955) 
which deals with probabilistic uncertain data and 
fuzzy programming (FP) (Zimmermann, 1978) 
which deals with fuzzily described data.

SP is a branch of mathematical programming, 
where some / all of model parameters of a problem 
are random in nature. The Chance constrained pro-
gramming (CCP) as a special field of SP (Charnes, 
& Cooper, 1959) has been studied deeply and 
used effectively to a real-life problem (Liu, Wu, 
& Hao, 2012; Mesfin, & Shuhaimi, 2010). On the 
other hand, FP based on the theory of fuzzy sets 
(Zadeh, 1965) has been studied (Zimmermann, 
1987) extensively in the past and employed to 
different real-life problems (Li, Xu, & Gen, 2006; 
Slowinski, 1986). Further, fuzzy goal program-
ming (FGP) (Pal, & Moitra, 2003) based on the 
notion of goal satisficing philosophy (Simon, 
1957) in goal programming (GP) (Ignizio, 1976) 
has also been studied in the past, and applied to 
various problems (Kumar, & Pal, 2013; Pal, & 
Chakraborti, 2013) in the recent past.

In this chapter, a parametric programming 
based solution approach, initially introduced by 
Dinkelbach (1967), is addressed to solve chance 

constrained multiobjective decision making 
(MODM) problems with fractional criteria. In the 
proposed approach, the linear forms of the defined 
deterministic equivalents of chance constraints 
with continuous random parameters are considered 
to solve the problem by employing parametric 
minsum FGP methodology. In the solution pro-
cess, minimization of under-deviational variables 
associated with membership goals of the defined 
fuzzy goals according to their relative weights 
of importance is considered to arrive at optimal 
decision in imprecise environment.

BACKGROUND

The fractional programming (Schaible, & Ibaraki, 
1983) with multiplicity of objectives have been 
studied (Steuer, 1986) previously as a special field 
of study in the area of nonlinear programming 
(NLP) (Avriel, 1976), where objectives appear in 
the form of ratios in the programming and plan-
ning environment. The deep study in the area of 
fractional programming has been made in the past 
and extensively appeared (Craven, 1988; Zhu, & 
Huang, 2011) in the literature.

The methodological aspects of solving fuzzily 
described multiobjective fractional programming 
problems (MOFPPs) have been studied (Rommel-
fanger, Hanuscheck, & Wolf, 1989; Pal, Moitra, & 
Maulik, 2003) in the past and well documented in 
the literature. The linearization method with the 
use of variable changes for solving MOFPPs has 
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also been suggested (Pal, Moitra, & Sen, 2011) 
in the past. However, the extensive study in this 
area is still at an early stage.

Now, the mathematical framework of a chance 
constrained linear MOFPP is presented in the 
following section.

MODEL FORMULATION

The general format of a chance constrained linear 
MOFPP can be stated as:

Find X(x1, x2, …, xn) so as to:
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where Pr indicates the probabilistically defined 
constraints, A = (aij)m×n is a coefficient matrix and 
b is a resource vector, G g g g
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1 2
 and 

H h h h
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1 2
 are the coefficient vectors 

and where αk and βk are constants and p(0<p<1) 
is the vector of satisficing probability levels de-
fined for randomness of parameters associated 
with the constraints set. It is assumed that the 
feasible region S is nonempty (S≠φ), and where

K K K K K
1 2 1 2

1 2∪ = ∩ ={ , , ..., }, .ϕ 	

Now, it is assumed that the parameters are 
independent continuous normally distributed 
random variables. Then, conversion of the chance 
constraints in (1) into deterministic equivalents is 
described in the following section.

Deterministic Equivalents 
of Chance Constraints

The chance constraints set in (1) with ≥ type can 
be explicitly presented as (Blumenfeld, 2010):

Pr a x b p i m m m
ij
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Let E(aij) and E(bi), and Var(aij) and Var(bi) be 
the means and variances of the associated random 
variables aij and bi with the characteristics of 
normal distribution, where E(.) and Var(.) stand 
for mean and variance, respectively.

Then, in the sequel of deterministic conversion, 
let Fi(y) be the distribution function of the i-th 
random variable bi. Since Fi(y) is a monotonically 
non-decreasing function, the value of correspond-
ing variable is determined as

F Max y Pr b y
i i
− = ≤ ≤ < <1 0 1( ) { / ( ) },ε ε ε  	

(3)

Here, since aij and bi are normally distributed 
random variables, the conversion process can be 
described as follows.

Let,

y a x b
i ij j i
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=
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Since, yi is linear combination of normally 
distributed random variable; it would also follow 
the characteristics of normal distribution.
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