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INTRODUCTION

The problem of mining association rules from databases
was introduced by Agrawal, Imielinski, & Swami (1993). In
this problem, we give a set of items and a large collection
of transactions, which are subsets (baskets) of these
items. The task is to find relationships between the occur-
rences of various items within those baskets. Mining
association rules has been a central task of data mining,
which is a recent research focus in database systems and
machine learning and shows interesting applications in
various fields, including information management, query
processing, and process control.

When items contain quantitative and categorical val-
ues, association rules are called quantitative association
rules. For example, a quantitative association rule derived
from a regional household living standard investigation
database has the following form:

.]55,50[ housemarriedage →∧∈

Here, the first item, age, is numeric, and the second
item is categorical. Categorical attributes can be con-
verted to numerical attributes in a straightforward way by
enumerating all categorical values and mapping them to
numerical values.

An association rule becomes a fuzzy association rule
if its items contain probabilistic values that are defined by
fuzzy sets.

BACKGROUND

Many results on mining quantitative association rules
can be found in Li, Shen, and Topor (1999) and Miller and
Yang (1997). A common method for quantitative associa-
tion rule mining is to map numerical attributes to binary
attributes, then use algorithms of binary association rule
mining. A popular technique for mapping numerical at-
tributes is to attribute discretization that converts a con-

tinuous attribute value range to a set of discrete intervals
and then map all the values in each interval to an item of
binary values (Dougherty, Kohavi, & Sahami, 1995).

Two classical discretization methods are equal-width
discretization, which divides the attribute value range
into N intervals of equal width without considering the
population (number of instances) within each interval,
and equal-depth (or equal-cardinality) discretization,
which divides the attribute value range into N intervals of
equal populations without considering the similarity of
instances within each interval. Examples of using these
methods are given in Fukuda, Morimoto, Morishita, and
Tokuyama (1996); Miller and Yang (1997); and Srikant and
Agrawal (1996).

To overcome the problems of sharp boundaries
(Gyenesei, 2001) and expressiveness (Kuok, Fu, & Wong,
1998) in traditional discretization methods, methods for
mining fuzzy association rules were suggested. Many
traditional algorithms, such as Apriori, MAFIA, CLOSET,
and CHARM, were employed to discover fuzzy associa-
tion rules. However, the number of fuzzy attributes is
usually at least double the number of attributes; therefore,
these algorithms require huge computational times. To
reduce the computation cost of association mining, vari-
ous parallel algorithms based on count, data, and candi-
date distribution, along with other suitable strategies,
were suggested (Han, Karypis, & Kumar, 1997; Shen,
Liang, & Ng, 1999; Shen, 1999a; Zaki, Parthasarathy, &
Ogihara, 2001). Recently, a parallel algorithm for mining
fuzzy association rules, which divides the set of fuzzy
attributes into independent partitions based on the natu-
ral independence among fuzzy sets defined by the same
attribute, was proposed (Phan & Horiguchi, 2004b).

MAIN THRUST

This article introduces recent results of our research on
this topic in two prospects: mining quantitative associa-
tion rules and mining fuzzy association rules.
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Mining Quantitative and Fuzzy Association Rules

Mining Quantitative Association Rules

One method that was proposed is an adaptive numerical
value discretization method that considers both value
density and value distance of numerical attributes and
produces better quality intervals than the two classical
methods (Li et al., 1999). This method repeatedly selects
a pair of adjacent intervals that have the minimum differ-
ence to merge until a given criterion is met. It requires
quadratic time on the number of attribute values, because
each interval initially contains only a single value, and all
the intervals may be merged into one large interval con-
taining all the values in the worst case. A method of linear-
scan merging for quantizing numeric attribute values that
can be implemented in linear time sequentially and linear
cost in parallel was also proposed (Shen, 2001). This
method takes into consideration the maximal intrainterval
distance and load balancing simultaneously to improve
the quality of merging. In comparison with the existing
results in the same category, the algorithm achieves a
linear time speedup.

Suppose that a numerical attribute has m distinct
values, },...,{ 110 −= mxxxI , where attribute value xi has ni

occurrences in the database (weight). Let ∑ −

=
= 1

0

m

i inN be
the total number of attribute value occurrences, called
instances. Without loss of generality, we further assume
that xi < xi+1 for all 0<i<m-2 (otherwise, we can simply sort
these values). Define P to be a set of maximal disjoint
intervals on I, where interval Iu∈P contains a sequence of
attribute values {xu, xu+1,…,xv-1} and ∑ −

=
= 1v

ui iu nN  instances,
v is the index of the next interval after Iu in P, and 0<u<v<m.
We also assume that Iu has a representative center, cu.
Initially, Iu contains only xu, which is also its representa-
tive center.

We define the maximal intrainterval distance, denoted
by D*(Iu; cu), as follows:
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A s s u m e  t h a t  t w o  a d j a c e n t
intervals, },...{ 1−= vuu xxI and },...{ 1−= wvv xxI ,  contain
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vuu III �=′ , of the two intervals containing (v-u)+(w-

v)=w-u attribute values and ∑ −
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ui ivu nNN  instances to-

tal thus has its representative center given by the average
weighted value of (cu, nu) and (cv, nv):
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An optimal interval merge scheme produces a mini-
mum number of intervals whose maximal intrainterval
distances are each within a given threshold and whose
populations are as equal as possible. Assume that the
threshold for the maximal intrainterval difference is d,
which can be the average interinterval differences of all
the adjacent interval pairs or can be given by the system.
For k intervals, let the average population (support) of
each interval be kNNk /= and the population deviation

of interval Iu be || kuu NN −=∆ , where Nu is the actual
population of Iu. Initially, Iu={xu} and 0<u<m-1. Our strat-
egy leads to the following algorithm for interval merging:

1. Partition {I0, I1, …, Im-1} into a minimum number of
intervals such that each interval has a maximal
intrainterval distance not greater than d.

2. Assume that  Step 1 produces k  inter-
vals: },...,,{

110 −kuuu III  and 0=u0< u1…< uk-1<m-1. For

]:[
jjj uuu cXI = ,where },...,,{ 11 1 −+ +

=
jjjj uuuu xxxX and

juc is the representative center of 
juI , check to see

if moving 11 −+jux  to 
1+juI will result in a better load

balance while preserving the maximal intrainterval
distance property, and do so if it will.

Noticing that x0<x1 < …< xm-1, we can implement Step
1 simply by using a linear scan to form appropriate seg-
ments of intervals after a single pass. Starting from I0 ,
merge Iu with Iu+j for j = 1,2, … , until the next merge would
result in Iu’s maximal intrainterval distance greater than
the threshold; continue this process until no interval to be
merged remains. This process requires time O(m).

   Step 2 examines every adjacent pair of intervals after
the merge, requiring, at most, m-1 steps. Each step checks
the changes of population deviation by moving uj+1-1
instances from 

juI  to 
1+juI . That is, it considers whether the

following condition holds:

||||
11

+−
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∆−∆<∆−∆
jjjj uuuu ,
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